VeraCrypt
aboutsummaryrefslogtreecommitdiff
path: root/src/Volume/Pkcs5Kdf.cpp
blob: fd49d2e2a13f899d6082e8df21fdc3bf42493460 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
/*
 Derived from source code of TrueCrypt 7.1a, which is
 Copyright (c) 2008-2012 TrueCrypt Developers Association and which is governed
 by the TrueCrypt License 3.0.

 Modifications and additions to the original source code (contained in this file)
 and all other portions of this file are Copyright (c) 2013-2017 IDRIX
 and are governed by the Apache License 2.0 the full text of which is
 contained in the file License.txt included in VeraCrypt binary and source
 code distribution packages.
*/

#include "Common/Pkcs5.h"
#include "Pkcs5Kdf.h"
#include "VolumePassword.h"

namespace VeraCrypt
{
	Pkcs5Kdf::Pkcs5Kdf (bool truecryptMode) : m_truecryptMode(truecryptMode)
	{
	}

	Pkcs5Kdf::~Pkcs5Kdf ()
	{
	}

	void Pkcs5Kdf::DeriveKey (const BufferPtr &key, const VolumePassword &password, int pim, const ConstBufferPtr &salt) const
	{
		DeriveKey (key, password, salt, GetIterationCount(pim));
	}

	shared_ptr <Pkcs5Kdf> Pkcs5Kdf::GetAlgorithm (const wstring &name, bool truecryptMode)
	{
		foreach (shared_ptr <Pkcs5Kdf> kdf, GetAvailableAlgorithms(truecryptMode))
		{
			if (kdf->GetName() == name)
				return kdf;
		}
		throw ParameterIncorrect (SRC_POS);
	}

	shared_ptr <Pkcs5Kdf> Pkcs5Kdf::GetAlgorithm (const Hash &hash, bool truecryptMode)
	{
		foreach (shared_ptr <Pkcs5Kdf> kdf, GetAvailableAlgorithms(truecryptMode))
		{
			if (typeid (*kdf->GetHash()) == typeid (hash))
				return kdf;
		}

		throw ParameterIncorrect (SRC_POS);
	}

	Pkcs5KdfList Pkcs5Kdf::GetAvailableAlgorithms (bool truecryptMode)
	{
		Pkcs5KdfList l;

		if (truecryptMode)
		{
			l.push_back (shared_ptr <Pkcs5Kdf> (new Pkcs5HmacRipemd160 (true)));
			l.push_back (shared_ptr <Pkcs5Kdf> (new Pkcs5HmacSha512 (true)));
			l.push_back (shared_ptr <Pkcs5Kdf> (new Pkcs5HmacWhirlpool (true)));
		}
		else
		{
			l.push_back (shared_ptr <Pkcs5Kdf> (new Pkcs5HmacSha512 (false)));
			l.push_back (shared_ptr <Pkcs5Kdf> (new Pkcs5HmacWhirlpool (false)));
			l.push_back (shared_ptr <Pkcs5Kdf> (new Pkcs5HmacSha256 ()));
			l.push_back (shared_ptr <Pkcs5Kdf> (new Pkcs5HmacRipemd160 (false)));
			l.push_back (shared_ptr <Pkcs5Kdf> (new Pkcs5HmacStreebog ()));
		}

		return l;
	}

	void Pkcs5Kdf::ValidateParameters (const BufferPtr &key, const VolumePassword &password, const ConstBufferPtr &salt, int iterationCount) const
	{
		if (key.Size() < 1 || password.Size() < 1 || salt.Size() < 1 || iterationCount < 1)
			throw ParameterIncorrect (SRC_POS);
	}

	void Pkcs5HmacRipemd160::DeriveKey (const BufferPtr &key, const VolumePassword &password, const ConstBufferPtr &salt, int iterationCount) const
	{
		ValidateParameters (key, password, salt, iterationCount);
		derive_key_ripemd160 ((char *) password.DataPtr(), (int) password.Size(), (char *) salt.Get(), (int) salt.Size(), iterationCount, (char *) key.Get(), (int) key.Size());
	}

	void Pkcs5HmacRipemd160_1000::DeriveKey (const BufferPtr &key, const VolumePassword &password, const ConstBufferPtr &salt, int iterationCount) const
	{
		ValidateParameters (key, password, salt, iterationCount);
		derive_key_ripemd160 ((char *) password.DataPtr(), (int) password.Size(), (char *) salt.Get(), (int) salt.Size(), iterationCount, (char *) key.Get(), (int) key.Size());
	}

	void Pkcs5HmacSha256_Boot::DeriveKey (const BufferPtr &key, const VolumePassword &password, const ConstBufferPtr &salt, int iterationCount) const
	{
		ValidateParameters (key, password, salt, iterationCount);
		derive_key_sha256 ((char *) password.DataPtr(), (int) password.Size(), (char *) salt.Get(), (int) salt.Size(), iterationCount, (char *) key.Get(), (int) key.Size());
	}

	void Pkcs5HmacSha256::DeriveKey (const BufferPtr &key, const VolumePassword &password, const ConstBufferPtr &salt, int iterationCount) const
	{
		ValidateParameters (key, password, salt, iterationCount);
		derive_key_sha256 ((char *) password.DataPtr(), (int) password.Size(), (char *) salt.Get(), (int) salt.Size(), iterationCount, (char *) key.Get(), (int) key.Size());
	}

	void Pkcs5HmacSha512::DeriveKey (const BufferPtr &key, const VolumePassword &password, const ConstBufferPtr &salt, int iterationCount) const
	{
		ValidateParameters (key, password, salt, iterationCount);
		derive_key_sha512 ((char *) password.DataPtr(), (int) password.Size(), (char *) salt.Get(), (int) salt.Size(), iterationCount, (char *) key.Get(), (int) key.Size());
	}

	void Pkcs5HmacWhirlpool::DeriveKey (const BufferPtr &key, const VolumePassword &password, const ConstBufferPtr &salt, int iterationCount) const
	{
		ValidateParameters (key, password, salt, iterationCount);
		derive_key_whirlpool ((char *) password.DataPtr(), (int) password.Size(), (char *) salt.Get(), (int) salt.Size(), iterationCount, (char *) key.Get(), (int) key.Size());
	}
	
	void Pkcs5HmacStreebog::DeriveKey (const BufferPtr &key, const VolumePassword &password, const ConstBufferPtr &salt, int iterationCount) const
	{
		ValidateParameters (key, password, salt, iterationCount);
		derive_key_streebog ((char *) password.DataPtr(), (int) password.Size(), (char *) salt.Get(), (int) salt.Size(), iterationCount, (char *) key.Get(), (int) key.Size());
	}
	
	void Pkcs5HmacStreebog_Boot::DeriveKey (const BufferPtr &key, const VolumePassword &password, const ConstBufferPtr &salt, int iterationCount) const
	{
		ValidateParameters (key, password, salt, iterationCount);
		derive_key_streebog ((char *) password.DataPtr(), (int) password.Size(), (char *) salt.Get(), (int) salt.Size(), iterationCount, (char *) key.Get(), (int) key.Size());
	}
}
s="o">+ sizeof (whiteningValues) / sizeof (*whiteningValuesPtr64) - 1; TC_LARGEST_COMPILER_UINT blockCount, dataUnitNo; /* The encrypted data unit number (i.e. the resultant ciphertext block) is to be multiplied in the finite field GF(2^128) by j-th power of n, where j is the sequential plaintext/ciphertext block number and n is 2, a primitive element of GF(2^128). This can be (and is) simplified and implemented as a left shift of the preceding whitening value by one bit (with carry propagating). In addition, if the shift of the highest byte results in a carry, 135 is XORed into the lowest byte. The value 135 is derived from the modulus of the Galois Field (x^128+x^7+x^2+x+1). */ // Convert the 64-bit data unit number into a little-endian 16-byte array. // Note that as we are converting a 64-bit number into a 16-byte array we can always zero the last 8 bytes. dataUnitNo = startDataUnitNo->Value; *((unsigned __int64 *) byteBufUnitNo) = LE64 (dataUnitNo); *((unsigned __int64 *) byteBufUnitNo + 1) = 0; if (length % BYTES_PER_XTS_BLOCK) TC_THROW_FATAL_EXCEPTION; blockCount = length / BYTES_PER_XTS_BLOCK; // Process all blocks in the buffer while (blockCount > 0) { if (blockCount < BLOCKS_PER_XTS_DATA_UNIT) endBlock = startBlock + (unsigned int) blockCount; else endBlock = BLOCKS_PER_XTS_DATA_UNIT; whiteningValuesPtr64 = finalInt64WhiteningValuesPtr; whiteningValuePtr64 = (unsigned __int64 *) whiteningValue; // Encrypt the data unit number using the secondary key (in order to generate the first // whitening value for this data unit) *whiteningValuePtr64 = *((unsigned __int64 *) byteBufUnitNo); *(whiteningValuePtr64 + 1) = 0; EncipherBlock (cipher, whiteningValue, ks2); // Generate subsequent whitening values for blocks in this data unit. Note that all generated 128-bit // whitening values are stored in memory as a sequence of 64-bit integers in reverse order. for (block = 0; block < endBlock; block++) { if (block >= startBlock) { *whiteningValuesPtr64-- = *whiteningValuePtr64++; *whiteningValuesPtr64-- = *whiteningValuePtr64; } else whiteningValuePtr64++; // Derive the next whitening value #if BYTE_ORDER == LITTLE_ENDIAN // Little-endian platforms finalCarry = (*whiteningValuePtr64 & 0x8000000000000000) ? 135 : 0; *whiteningValuePtr64-- <<= 1; if (*whiteningValuePtr64 & 0x8000000000000000) *(whiteningValuePtr64 + 1) |= 1; *whiteningValuePtr64 <<= 1; #else // Big-endian platforms finalCarry = (*whiteningValuePtr64 & 0x80) ? 135 : 0; *whiteningValuePtr64 = LE64 (LE64 (*whiteningValuePtr64) << 1); whiteningValuePtr64--; if (*whiteningValuePtr64 & 0x80) *(whiteningValuePtr64 + 1) |= 0x0100000000000000; *whiteningValuePtr64 = LE64 (LE64 (*whiteningValuePtr64) << 1); #endif whiteningValue[0] ^= finalCarry; } dataUnitBufPtr = bufPtr; whiteningValuesPtr64 = finalInt64WhiteningValuesPtr; // Encrypt all blocks in this data unit for (block = startBlock; block < endBlock; block++) { // Pre-whitening *bufPtr++ ^= *whiteningValuesPtr64--; *bufPtr++ ^= *whiteningValuesPtr64--; } // Actual encryption EncipherBlocks (cipher, dataUnitBufPtr, ks, endBlock - startBlock); bufPtr = dataUnitBufPtr; whiteningValuesPtr64 = finalInt64WhiteningValuesPtr; for (block = startBlock; block < endBlock; block++) { // Post-whitening *bufPtr++ ^= *whiteningValuesPtr64--; *bufPtr++ ^= *whiteningValuesPtr64--; } blockCount -= endBlock - startBlock; startBlock = 0; dataUnitNo++; *((unsigned __int64 *) byteBufUnitNo) = LE64 (dataUnitNo); } FAST_ERASE64 (whiteningValue, sizeof (whiteningValue)); FAST_ERASE64 (whiteningValues, sizeof (whiteningValues)); } // Optimized for encryption algorithms not supporting intra-data-unit parallelization static void EncryptBufferXTSNonParallel (unsigned __int8 *buffer, TC_LARGEST_COMPILER_UINT length, const UINT64_STRUCT *startDataUnitNo, unsigned int startCipherBlockNo, unsigned __int8 *ks, unsigned __int8 *ks2, int cipher) { unsigned __int8 finalCarry; unsigned __int8 whiteningValue [BYTES_PER_XTS_BLOCK]; unsigned __int8 byteBufUnitNo [BYTES_PER_XTS_BLOCK]; unsigned __int64 *whiteningValuePtr64 = (unsigned __int64 *) whiteningValue; unsigned __int64 *bufPtr = (unsigned __int64 *) buffer; unsigned int startBlock = startCipherBlockNo, endBlock, block; TC_LARGEST_COMPILER_UINT blockCount, dataUnitNo; /* The encrypted data unit number (i.e. the resultant ciphertext block) is to be multiplied in the finite field GF(2^128) by j-th power of n, where j is the sequential plaintext/ciphertext block number and n is 2, a primitive element of GF(2^128). This can be (and is) simplified and implemented as a left shift of the preceding whitening value by one bit (with carry propagating). In addition, if the shift of the highest byte results in a carry, 135 is XORed into the lowest byte. The value 135 is derived from the modulus of the Galois Field (x^128+x^7+x^2+x+1). */ // Convert the 64-bit data unit number into a little-endian 16-byte array. // Note that as we are converting a 64-bit number into a 16-byte array we can always zero the last 8 bytes. dataUnitNo = startDataUnitNo->Value; *((unsigned __int64 *) byteBufUnitNo) = LE64 (dataUnitNo); *((unsigned __int64 *) byteBufUnitNo + 1) = 0; if (length % BYTES_PER_XTS_BLOCK) TC_THROW_FATAL_EXCEPTION; blockCount = length / BYTES_PER_XTS_BLOCK; // Process all blocks in the buffer while (blockCount > 0) { if (blockCount < BLOCKS_PER_XTS_DATA_UNIT) endBlock = startBlock + (unsigned int) blockCount; else endBlock = BLOCKS_PER_XTS_DATA_UNIT; whiteningValuePtr64 = (unsigned __int64 *) whiteningValue; // Encrypt the data unit number using the secondary key (in order to generate the first // whitening value for this data unit) *whiteningValuePtr64 = *((unsigned __int64 *) byteBufUnitNo); *(whiteningValuePtr64 + 1) = 0; EncipherBlock (cipher, whiteningValue, ks2); // Generate (and apply) subsequent whitening values for blocks in this data unit and // encrypt all relevant blocks in this data unit for (block = 0; block < endBlock; block++) { if (block >= startBlock) { // Pre-whitening *bufPtr++ ^= *whiteningValuePtr64++; *bufPtr-- ^= *whiteningValuePtr64--; // Actual encryption EncipherBlock (cipher, bufPtr, ks); // Post-whitening *bufPtr++ ^= *whiteningValuePtr64++; *bufPtr++ ^= *whiteningValuePtr64; } else whiteningValuePtr64++; // Derive the next whitening value #if BYTE_ORDER == LITTLE_ENDIAN // Little-endian platforms finalCarry = (*whiteningValuePtr64 & 0x8000000000000000) ? 135 : 0; *whiteningValuePtr64-- <<= 1; if (*whiteningValuePtr64 & 0x8000000000000000) *(whiteningValuePtr64 + 1) |= 1; *whiteningValuePtr64 <<= 1; #else // Big-endian platforms finalCarry = (*whiteningValuePtr64 & 0x80) ? 135 : 0; *whiteningValuePtr64 = LE64 (LE64 (*whiteningValuePtr64) << 1); whiteningValuePtr64--; if (*whiteningValuePtr64 & 0x80) *(whiteningValuePtr64 + 1) |= 0x0100000000000000; *whiteningValuePtr64 = LE64 (LE64 (*whiteningValuePtr64) << 1); #endif whiteningValue[0] ^= finalCarry; } blockCount -= endBlock - startBlock; startBlock = 0; dataUnitNo++; *((unsigned __int64 *) byteBufUnitNo) = LE64 (dataUnitNo); } FAST_ERASE64 (whiteningValue, sizeof (whiteningValue)); } // For descriptions of the input parameters, see EncryptBufferXTS(). void DecryptBufferXTS (unsigned __int8 *buffer, TC_LARGEST_COMPILER_UINT length, const UINT64_STRUCT *startDataUnitNo, unsigned int startCipherBlockNo, unsigned __int8 *ks, unsigned __int8 *ks2, int cipher) { if (CipherSupportsIntraDataUnitParallelization (cipher)) DecryptBufferXTSParallel (buffer, length, startDataUnitNo, startCipherBlockNo, ks, ks2, cipher); else DecryptBufferXTSNonParallel (buffer, length, startDataUnitNo, startCipherBlockNo, ks, ks2, cipher); } // Optimized for encryption algorithms supporting intra-data-unit parallelization static void DecryptBufferXTSParallel (unsigned __int8 *buffer, TC_LARGEST_COMPILER_UINT length, const UINT64_STRUCT *startDataUnitNo, unsigned int startCipherBlockNo, unsigned __int8 *ks, unsigned __int8 *ks2, int cipher) { unsigned __int8 finalCarry; unsigned __int8 whiteningValues [ENCRYPTION_DATA_UNIT_SIZE]; unsigned __int8 whiteningValue [BYTES_PER_XTS_BLOCK]; unsigned __int8 byteBufUnitNo [BYTES_PER_XTS_BLOCK]; unsigned __int64 *whiteningValuesPtr64 = (unsigned __int64 *) whiteningValues; unsigned __int64 *whiteningValuePtr64 = (unsigned __int64 *) whiteningValue; unsigned __int64 *bufPtr = (unsigned __int64 *) buffer; unsigned __int64 *dataUnitBufPtr; unsigned int startBlock = startCipherBlockNo, endBlock, block; unsigned __int64 *const finalInt64WhiteningValuesPtr = whiteningValuesPtr64 + sizeof (whiteningValues) / sizeof (*whiteningValuesPtr64) - 1; TC_LARGEST_COMPILER_UINT blockCount, dataUnitNo; // Convert the 64-bit data unit number into a little-endian 16-byte array. // Note that as we are converting a 64-bit number into a 16-byte array we can always zero the last 8 bytes. dataUnitNo = startDataUnitNo->Value; *((unsigned __int64 *) byteBufUnitNo) = LE64 (dataUnitNo); *((unsigned __int64 *) byteBufUnitNo + 1) = 0; if (length % BYTES_PER_XTS_BLOCK) TC_THROW_FATAL_EXCEPTION; blockCount = length / BYTES_PER_XTS_BLOCK; // Process all blocks in the buffer while (blockCount > 0) { if (blockCount < BLOCKS_PER_XTS_DATA_UNIT) endBlock = startBlock + (unsigned int) blockCount; else endBlock = BLOCKS_PER_XTS_DATA_UNIT; whiteningValuesPtr64 = finalInt64WhiteningValuesPtr; whiteningValuePtr64 = (unsigned __int64 *) whiteningValue; // Encrypt the data unit number using the secondary key (in order to generate the first // whitening value for this data unit) *whiteningValuePtr64 = *((unsigned __int64 *) byteBufUnitNo); *(whiteningValuePtr64 + 1) = 0; EncipherBlock (cipher, whiteningValue, ks2); // Generate subsequent whitening values for blocks in this data unit. Note that all generated 128-bit // whitening values are stored in memory as a sequence of 64-bit integers in reverse order. for (block = 0; block < endBlock; block++) { if (block >= startBlock) { *whiteningValuesPtr64-- = *whiteningValuePtr64++; *whiteningValuesPtr64-- = *whiteningValuePtr64; } else whiteningValuePtr64++; // Derive the next whitening value #if BYTE_ORDER == LITTLE_ENDIAN // Little-endian platforms finalCarry = (*whiteningValuePtr64 & 0x8000000000000000) ? 135 : 0; *whiteningValuePtr64-- <<= 1; if (*whiteningValuePtr64 & 0x8000000000000000) *(whiteningValuePtr64 + 1) |= 1; *whiteningValuePtr64 <<= 1; #else // Big-endian platforms finalCarry = (*whiteningValuePtr64 & 0x80) ? 135 : 0; *whiteningValuePtr64 = LE64 (LE64 (*whiteningValuePtr64) << 1); whiteningValuePtr64--; if (*whiteningValuePtr64 & 0x80) *(whiteningValuePtr64 + 1) |= 0x0100000000000000; *whiteningValuePtr64 = LE64 (LE64 (*whiteningValuePtr64) << 1); #endif whiteningValue[0] ^= finalCarry; } dataUnitBufPtr = bufPtr; whiteningValuesPtr64 = finalInt64WhiteningValuesPtr; // Decrypt blocks in this data unit for (block = startBlock; block < endBlock; block++) { *bufPtr++ ^= *whiteningValuesPtr64--; *bufPtr++ ^= *whiteningValuesPtr64--; } DecipherBlocks (cipher, dataUnitBufPtr, ks, endBlock - startBlock); bufPtr = dataUnitBufPtr; whiteningValuesPtr64 = finalInt64WhiteningValuesPtr; for (block = startBlock; block < endBlock; block++) { *bufPtr++ ^= *whiteningValuesPtr64--; *bufPtr++ ^= *whiteningValuesPtr64--; } blockCount -= endBlock - startBlock; startBlock = 0; dataUnitNo++; *((unsigned __int64 *) byteBufUnitNo) = LE64 (dataUnitNo); } FAST_ERASE64 (whiteningValue, sizeof (whiteningValue)); FAST_ERASE64 (whiteningValues, sizeof (whiteningValues)); } // Optimized for encryption algorithms not supporting intra-data-unit parallelization static void DecryptBufferXTSNonParallel (unsigned __int8 *buffer, TC_LARGEST_COMPILER_UINT length, const UINT64_STRUCT *startDataUnitNo, unsigned int startCipherBlockNo, unsigned __int8 *ks, unsigned __int8 *ks2, int cipher) { unsigned __int8 finalCarry; unsigned __int8 whiteningValue [BYTES_PER_XTS_BLOCK]; unsigned __int8 byteBufUnitNo [BYTES_PER_XTS_BLOCK]; unsigned __int64 *whiteningValuePtr64 = (unsigned __int64 *) whiteningValue; unsigned __int64 *bufPtr = (unsigned __int64 *) buffer; unsigned int startBlock = startCipherBlockNo, endBlock, block; TC_LARGEST_COMPILER_UINT blockCount, dataUnitNo; // Convert the 64-bit data unit number into a little-endian 16-byte array. // Note that as we are converting a 64-bit number into a 16-byte array we can always zero the last 8 bytes. dataUnitNo = startDataUnitNo->Value; *((unsigned __int64 *) byteBufUnitNo) = LE64 (dataUnitNo); *((unsigned __int64 *) byteBufUnitNo + 1) = 0; if (length % BYTES_PER_XTS_BLOCK) TC_THROW_FATAL_EXCEPTION; blockCount = length / BYTES_PER_XTS_BLOCK; // Process all blocks in the buffer while (blockCount > 0) { if (blockCount < BLOCKS_PER_XTS_DATA_UNIT) endBlock = startBlock + (unsigned int) blockCount; else endBlock = BLOCKS_PER_XTS_DATA_UNIT; whiteningValuePtr64 = (unsigned __int64 *) whiteningValue; // Encrypt the data unit number using the secondary key (in order to generate the first // whitening value for this data unit) *whiteningValuePtr64 = *((unsigned __int64 *) byteBufUnitNo); *(whiteningValuePtr64 + 1) = 0; EncipherBlock (cipher, whiteningValue, ks2); // Generate (and apply) subsequent whitening values for blocks in this data unit and // decrypt all relevant blocks in this data unit for (block = 0; block < endBlock; block++) { if (block >= startBlock) { // Post-whitening *bufPtr++ ^= *whiteningValuePtr64++; *bufPtr-- ^= *whiteningValuePtr64--; // Actual decryption DecipherBlock (cipher, bufPtr, ks); // Pre-whitening *bufPtr++ ^= *whiteningValuePtr64++; *bufPtr++ ^= *whiteningValuePtr64; } else whiteningValuePtr64++; // Derive the next whitening value #if BYTE_ORDER == LITTLE_ENDIAN // Little-endian platforms finalCarry = (*whiteningValuePtr64 & 0x8000000000000000) ? 135 : 0; *whiteningValuePtr64-- <<= 1; if (*whiteningValuePtr64 & 0x8000000000000000) *(whiteningValuePtr64 + 1) |= 1; *whiteningValuePtr64 <<= 1; #else // Big-endian platforms finalCarry = (*whiteningValuePtr64 & 0x80) ? 135 : 0; *whiteningValuePtr64 = LE64 (LE64 (*whiteningValuePtr64) << 1); whiteningValuePtr64--; if (*whiteningValuePtr64 & 0x80) *(whiteningValuePtr64 + 1) |= 0x0100000000000000; *whiteningValuePtr64 = LE64 (LE64 (*whiteningValuePtr64) << 1); #endif whiteningValue[0] ^= finalCarry; } blockCount -= endBlock - startBlock; startBlock = 0; dataUnitNo++; *((unsigned __int64 *) byteBufUnitNo) = LE64 (dataUnitNo); } FAST_ERASE64 (whiteningValue, sizeof (whiteningValue)); } #else // TC_NO_COMPILER_INT64 /* ---- The following code is to be used only when native 64-bit data types are not available. ---- */ #if BYTE_ORDER == BIG_ENDIAN #error The TC_NO_COMPILER_INT64 version of the XTS code is not compatible with big-endian platforms #endif // Converts a 64-bit unsigned integer (passed as two 32-bit integers for compatibility with non-64-bit // environments/platforms) into a little-endian 16-byte array. static void Uint64ToLE16ByteArray (unsigned __int8 *byteBuf, unsigned __int32 highInt32, unsigned __int32 lowInt32) { unsigned __int32 *bufPtr32 = (unsigned __int32 *) byteBuf; *bufPtr32++ = lowInt32; *bufPtr32++ = highInt32; // We're converting a 64-bit number into a little-endian 16-byte array so we can zero the last 8 bytes *bufPtr32++ = 0; *bufPtr32 = 0; } // Encrypts or decrypts all blocks in the buffer in XTS mode. For descriptions of the input parameters, // see the 64-bit version of EncryptBufferXTS(). static void EncryptDecryptBufferXTS32 (const unsigned __int8 *buffer, TC_LARGEST_COMPILER_UINT length, const UINT64_STRUCT *startDataUnitNo, unsigned int startBlock, unsigned __int8 *ks, unsigned __int8 *ks2, int cipher, BOOL decryption) { TC_LARGEST_COMPILER_UINT blockCount; UINT64_STRUCT dataUnitNo; unsigned int block; unsigned int endBlock; unsigned __int8 byteBufUnitNo [BYTES_PER_XTS_BLOCK]; unsigned __int8 whiteningValue [BYTES_PER_XTS_BLOCK]; unsigned __int32 *bufPtr32 = (unsigned __int32 *) buffer; unsigned __int32 *whiteningValuePtr32 = (unsigned __int32 *) whiteningValue; unsigned __int8 finalCarry; unsigned __int32 *const finalDwordWhiteningValuePtr = whiteningValuePtr32 + sizeof (whiteningValue) / sizeof (*whiteningValuePtr32) - 1; // Store the 64-bit data unit number in a way compatible with non-64-bit environments/platforms dataUnitNo.HighPart = startDataUnitNo->HighPart; dataUnitNo.LowPart = startDataUnitNo->LowPart; blockCount = length / BYTES_PER_XTS_BLOCK; // Convert the 64-bit data unit number into a little-endian 16-byte array. // (Passed as two 32-bit integers for compatibility with non-64-bit environments/platforms.) Uint64ToLE16ByteArray (byteBufUnitNo, dataUnitNo.HighPart, dataUnitNo.LowPart); // Generate whitening values for all blocks in the buffer while (blockCount > 0) { if (blockCount < BLOCKS_PER_XTS_DATA_UNIT) endBlock = startBlock + (unsigned int) blockCount; else endBlock = BLOCKS_PER_XTS_DATA_UNIT; // Encrypt the data unit number using the secondary key (in order to generate the first // whitening value for this data unit) memcpy (whiteningValue, byteBufUnitNo, BYTES_PER_XTS_BLOCK); EncipherBlock (cipher, whiteningValue, ks2); // Generate (and apply) subsequent whitening values for blocks in this data unit and // encrypt/decrypt all relevant blocks in this data unit for (block = 0; block < endBlock; block++) { if (block >= startBlock) { whiteningValuePtr32 = (unsigned __int32 *) whiteningValue; // Whitening *bufPtr32++ ^= *whiteningValuePtr32++; *bufPtr32++ ^= *whiteningValuePtr32++; *bufPtr32++ ^= *whiteningValuePtr32++; *bufPtr32 ^= *whiteningValuePtr32; bufPtr32 -= BYTES_PER_XTS_BLOCK / sizeof (*bufPtr32) - 1; // Actual encryption/decryption if (decryption) DecipherBlock (cipher, bufPtr32, ks); else EncipherBlock (cipher, bufPtr32, ks); whiteningValuePtr32 = (unsigned __int32 *) whiteningValue; // Whitening *bufPtr32++ ^= *whiteningValuePtr32++; *bufPtr32++ ^= *whiteningValuePtr32++; *bufPtr32++ ^= *whiteningValuePtr32++; *bufPtr32++ ^= *whiteningValuePtr32; } // Derive the next whitening value finalCarry = 0; for (whiteningValuePtr32 = finalDwordWhiteningValuePtr; whiteningValuePtr32 >= (unsigned __int32 *) whiteningValue; whiteningValuePtr32--) { if (*whiteningValuePtr32 & 0x80000000) // If the following shift results in a carry { if (whiteningValuePtr32 != finalDwordWhiteningValuePtr) // If not processing the highest double word { // A regular carry *(whiteningValuePtr32 + 1) |= 1; } else { // The highest byte shift will result in a carry finalCarry = 135; } } *whiteningValuePtr32 <<= 1; } whiteningValue[0] ^= finalCarry; } blockCount -= endBlock - startBlock; startBlock = 0; // Increase the data unit number by one if (!++dataUnitNo.LowPart) { dataUnitNo.HighPart++; } // Convert the 64-bit data unit number into a little-endian 16-byte array. Uint64ToLE16ByteArray (byteBufUnitNo, dataUnitNo.HighPart, dataUnitNo.LowPart); } FAST_ERASE64 (whiteningValue, sizeof (whiteningValue)); } // For descriptions of the input parameters, see the 64-bit version of EncryptBufferXTS() above. void EncryptBufferXTS (unsigned __int8 *buffer, TC_LARGEST_COMPILER_UINT length, const UINT64_STRUCT *startDataUnitNo, unsigned int startCipherBlockNo, unsigned __int8 *ks, unsigned __int8 *ks2, int cipher) { // Encrypt all plaintext blocks in the buffer EncryptDecryptBufferXTS32 (buffer, length, startDataUnitNo, startCipherBlockNo, ks, ks2, cipher, FALSE); } // For descriptions of the input parameters, see the 64-bit version of EncryptBufferXTS(). void DecryptBufferXTS (unsigned __int8 *buffer, TC_LARGEST_COMPILER_UINT length, const UINT64_STRUCT *startDataUnitNo, unsigned int startCipherBlockNo, unsigned __int8 *ks, unsigned __int8 *ks2, int cipher) { // Decrypt all ciphertext blocks in the buffer EncryptDecryptBufferXTS32 (buffer, length, startDataUnitNo, startCipherBlockNo, ks, ks2, cipher, TRUE); } #endif // TC_NO_COMPILER_INT64