VeraCrypt
aboutsummaryrefslogtreecommitdiff
path: root/src/Core/CoreBase.cpp
blob: 1703feeabf89f13499aecd5057ea748ad961aa8e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
/*
 Derived from source code of TrueCrypt 7.1a, which is
 Copyright (c) 2008-2012 TrueCrypt Developers Association and which is governed
 by the TrueCrypt License 3.0.

 Modifications and additions to the original source code (contained in this file)
 and all other portions of this file are Copyright (c) 2013-2016 IDRIX
 and are governed by the Apache License 2.0 the full text of which is
 contained in the file License.txt included in VeraCrypt binary and source
 code distribution packages.
*/

#include <set>

#include "CoreBase.h"
#include "RandomNumberGenerator.h"
#include "Volume/Volume.h"

namespace VeraCrypt
{
	CoreBase::CoreBase ()
		: DeviceChangeInProgress (false)
	{
	}

	CoreBase::~CoreBase ()
	{
	}

	void CoreBase::ChangePassword (shared_ptr <Volume> openVolume, shared_ptr <VolumePassword> newPassword, int newPim, shared_ptr <KeyfileList> newKeyfiles, shared_ptr <Pkcs5Kdf> newPkcs5Kdf, int wipeCount) const
	{
		if ((!newPassword || newPassword->Size() < 1) && (!newKeyfiles || newKeyfiles->empty()))
			throw PasswordEmpty (SRC_POS);

		if (!newPkcs5Kdf)
		{
			if (openVolume->GetPkcs5Kdf()->GetTrueCryptMode ())
			{
				newPkcs5Kdf.reset (openVolume->GetPkcs5Kdf()->Clone());
				newPkcs5Kdf->SetTrueCryptMode (false);
			}
			else
				newPkcs5Kdf = openVolume->GetPkcs5Kdf();
		}

		if ((openVolume->GetHeader()->GetFlags() & TC_HEADER_FLAG_ENCRYPTED_SYSTEM) != 0
			&& openVolume->GetType() == VolumeType::Hidden
			&& openVolume->GetPath().IsDevice())
		{
			throw EncryptedSystemRequired (SRC_POS);
		}

		RandomNumberGenerator::SetHash (newPkcs5Kdf->GetHash());

		SecureBuffer newSalt (openVolume->GetSaltSize());
		SecureBuffer newHeaderKey (VolumeHeader::GetLargestSerializedKeySize());

		shared_ptr <VolumePassword> password (Keyfile::ApplyListToPassword (newKeyfiles, newPassword));

		bool backupHeader = false;
		while (true)
		{
			for (int i = 1; i <= wipeCount; i++)
			{
				if (i == wipeCount)
					RandomNumberGenerator::GetData (newSalt);
				else
					RandomNumberGenerator::GetDataFast (newSalt);

				newPkcs5Kdf->DeriveKey (newHeaderKey, *password, newPim, newSalt);

				openVolume->ReEncryptHeader (backupHeader, newSalt, newHeaderKey, newPkcs5Kdf);
				openVolume->GetFile()->Flush();
			}

			if (!openVolume->GetLayout()->HasBackupHeader() || backupHeader)
				break;

			backupHeader = true;
		}
	}

	void CoreBase::ChangePassword (shared_ptr <VolumePath> volumePath, bool preserveTimestamps, shared_ptr <VolumePassword> password, int pim, shared_ptr <Pkcs5Kdf> kdf, bool truecryptMode, shared_ptr <KeyfileList> keyfiles, shared_ptr <VolumePassword> newPassword, int newPim, shared_ptr <KeyfileList> newKeyfiles, shared_ptr <Pkcs5Kdf> newPkcs5Kdf, int wipeCount) const
	{
		shared_ptr <Volume> volume = OpenVolume (volumePath, preserveTimestamps, password, pim, kdf, truecryptMode, keyfiles);
		ChangePassword (volume, newPassword, newPim, newKeyfiles, newPkcs5Kdf, wipeCount);
	}

	void CoreBase::CoalesceSlotNumberAndMountPoint (MountOptions &options) const
	{
		if (options.SlotNumber < GetFirstSlotNumber())
		{
			if (options.MountPoint && !options.MountPoint->IsEmpty())
				options.SlotNumber = MountPointToSlotNumber (*options.MountPoint);
			else
				options.SlotNumber = GetFirstFreeSlotNumber();
		}

		if (!IsSlotNumberAvailable (options.SlotNumber))
#ifdef TC_WINDOWS
			throw DriveLetterUnavailable (SRC_POS);
#else
			throw VolumeSlotUnavailable (SRC_POS);
#endif
		if (!options.NoFilesystem && (!options.MountPoint || options.MountPoint->IsEmpty()))
			options.MountPoint.reset (new DirectoryPath (SlotNumberToMountPoint (options.SlotNumber)));
	}

	void CoreBase::CreateKeyfile (const FilePath &keyfilePath) const
	{
		SecureBuffer keyfileBuffer (VolumePassword::MaxSize);
		RandomNumberGenerator::GetData (keyfileBuffer);

		File keyfile;
		keyfile.Open (keyfilePath, File::CreateWrite);
		keyfile.Write (keyfileBuffer);
	}

	VolumeSlotNumber CoreBase::GetFirstFreeSlotNumber (VolumeSlotNumber startFrom) const
	{
		if (startFrom < GetFirstSlotNumber())
			startFrom = GetFirstSlotNumber();

		set <VolumeSlotNumber> usedSlotNumbers;

		foreach_ref (const VolumeInfo &volume, GetMountedVolumes())
			usedSlotNumbers.insert (volume.SlotNumber);

		for (VolumeSlotNumber slotNumber = startFrom; slotNumber <= GetLastSlotNumber(); ++slotNumber)
		{
			if (usedSlotNumbers.find (slotNumber) == usedSlotNumbers.end()
				&& IsMountPointAvailable (SlotNumberToMountPoint (slotNumber)))
				return slotNumber;
		}
#ifdef TC_WINDOWS
		throw DriveLetterUnavailable (SRC_POS);
#else
		throw VolumeSlotUnavailable (SRC_POS);
#endif
	}

	uint64 CoreBase::GetMaxHiddenVolumeSize (shared_ptr <Volume> outerVolume) const
	{
		uint32 sectorSize = outerVolume->GetSectorSize();

		SecureBuffer bootSectorBuffer (sectorSize);
		outerVolume->ReadSectors (bootSectorBuffer, 0);

		int fatType;
		byte *bootSector = bootSectorBuffer.Ptr();

		if (memcmp (bootSector + 54, "FAT12", 5) == 0)
			fatType = 12;
		else if (memcmp (bootSector + 54, "FAT16", 5) == 0)
			fatType = 16;
		else if (memcmp (bootSector + 82, "FAT32", 5) == 0)
			fatType = 32;
		else
			throw ParameterIncorrect (SRC_POS);

		uint32 clusterSize = bootSector[13] * sectorSize;
		uint32 reservedSectorCount = Endian::Little (*(uint16 *) (bootSector + 14));
		uint32 fatCount = bootSector[16];

		uint64 fatSectorCount;
		if (fatType == 32)
			fatSectorCount = Endian::Little (*(uint32 *) (bootSector + 36));
		else
			fatSectorCount = Endian::Little (*(uint16 *) (bootSector + 22));
		uint64 fatSize = fatSectorCount * sectorSize;

		uint64 fatStartOffset = reservedSectorCount * sectorSize;
		uint64 dataAreaOffset = reservedSectorCount * sectorSize + fatSize * fatCount;

		if (fatType < 32)
			dataAreaOffset += Endian::Little (*(uint16 *) (bootSector + 17)) * 32;

		SecureBuffer sector (sectorSize);

		// Find last used cluster
		for (uint64 readOffset = fatStartOffset + fatSize - sectorSize;
			readOffset >= fatStartOffset;
			readOffset -= sectorSize)
		{
			outerVolume->ReadSectors (sector, readOffset);

			for (int offset = sectorSize - 4; offset >= 0; offset -= 4)
			{
				if (*(uint32 *) (sector.Ptr() + offset))
				{
					uint64 clusterNumber = readOffset - fatStartOffset + offset;

					if (fatType == 12)
						clusterNumber = (clusterNumber * 8) / 12;
					else if (fatType == 16)
						clusterNumber /= 2;
					else if (fatType == 32)
						clusterNumber /= 4;

					uint64 maxSize = outerVolume->GetSize() - dataAreaOffset;

					// Some FAT entries may span over sector boundaries
					if (maxSize >= clusterSize)
						maxSize -= clusterSize;

					uint64 clusterOffset = clusterNumber * clusterSize;
					if (maxSize < clusterOffset)
						return 0;

					return maxSize - clusterOffset;
				}
			}
		}

		return 0;
	}

	shared_ptr <VolumeInfo> CoreBase::GetMountedVolume (const VolumePath &volumePath) const
	{
		VolumeInfoList volumes = GetMountedVolumes (volumePath);
		if (volumes.empty())
			return shared_ptr <VolumeInfo> ();
		else
			return volumes.front();
	}

	shared_ptr <VolumeInfo> CoreBase::GetMountedVolume (VolumeSlotNumber slot) const
	{
		foreach (shared_ptr <VolumeInfo> volume, GetMountedVolumes())
		{
			if (volume->SlotNumber == slot)
				return volume;
		}

		return shared_ptr <VolumeInfo> ();
	}

	bool CoreBase::IsSlotNumberAvailable (VolumeSlotNumber slotNumber) const
	{
		if (!IsMountPointAvailable (SlotNumberToMountPoint (slotNumber)))
			return false;

		foreach_ref (const VolumeInfo &volume, GetMountedVolumes())
		{
			if (volume.SlotNumber == slotNumber)
				return false;
		}

		return true;
	}

	bool CoreBase::IsVolumeMounted (const VolumePath &volumePath) const
	{
		return GetMountedVolume (volumePath);
	}

	shared_ptr <Volume> CoreBase::OpenVolume (shared_ptr <VolumePath> volumePath, bool preserveTimestamps, shared_ptr <VolumePassword> password, int pim, shared_ptr<Pkcs5Kdf> kdf, bool truecryptMode, shared_ptr <KeyfileList> keyfiles, VolumeProtection::Enum protection, shared_ptr <VolumePassword> protectionPassword, int protectionPim, shared_ptr<Pkcs5Kdf> protectionKdf, shared_ptr <KeyfileList> protectionKeyfiles, bool sharedAccessAllowed, VolumeType::Enum volumeType, bool useBackupHeaders, bool partitionInSystemEncryptionScope) const
	{
		make_shared_auto (Volume, volume);
		volume->Open (*volumePath, preserveTimestamps, password, pim, kdf, truecryptMode, keyfiles, protection, protectionPassword, protectionPim, protectionKdf, protectionKeyfiles, sharedAccessAllowed, volumeType, useBackupHeaders, partitionInSystemEncryptionScope);
		return volume;
	}

	void CoreBase::RandomizeEncryptionAlgorithmKey (shared_ptr <EncryptionAlgorithm> encryptionAlgorithm) const
	{
		SecureBuffer eaKey (encryptionAlgorithm->GetKeySize());
		RandomNumberGenerator::GetData (eaKey);
		encryptionAlgorithm->SetKey (eaKey);

		SecureBuffer modeKey (encryptionAlgorithm->GetMode()->GetKeySize());
		RandomNumberGenerator::GetData (modeKey);
		encryptionAlgorithm->GetMode()->SetKey (modeKey);
	}

	void CoreBase::ReEncryptVolumeHeaderWithNewSalt (const BufferPtr &newHeaderBuffer, shared_ptr <VolumeHeader> header, shared_ptr <VolumePassword> password, int pim, shared_ptr <KeyfileList> keyfiles) const
	{
		shared_ptr <Pkcs5Kdf> pkcs5Kdf = header->GetPkcs5Kdf();

		RandomNumberGenerator::SetHash (pkcs5Kdf->GetHash());

		SecureBuffer newSalt (header->GetSaltSize());
		SecureBuffer newHeaderKey (VolumeHeader::GetLargestSerializedKeySize());

		shared_ptr <VolumePassword> passwordKey (Keyfile::ApplyListToPassword (keyfiles, password));

		RandomNumberGenerator::GetData (newSalt);
		pkcs5Kdf->DeriveKey (newHeaderKey, *passwordKey, pim, newSalt);

		header->EncryptNew (newHeaderBuffer, newSalt, newHeaderKey, pkcs5Kdf);
	}
}
n class="p">; while (len >= 32) { DOBIG32; len -= 32; } while (len >= 4) { DOBIG4; len -= 4; } buf = (const unsigned char FAR *)buf4; if (len) do { c = crc_table[4][(c >> 24) ^ *buf++] ^ (c << 8); } while (--len); c = ~c; return (unsigned long)(ZSWAP32(c)); } #endif /* BYFOUR */ #define GF2_DIM 32 /* dimension of GF(2) vectors (length of CRC) */ /* ========================================================================= */ local unsigned long gf2_matrix_times(mat, vec) unsigned long *mat; unsigned long vec; { unsigned long sum; sum = 0; while (vec) { if (vec & 1) sum ^= *mat; vec >>= 1; mat++; } return sum; } /* ========================================================================= */ local void gf2_matrix_square(square, mat) unsigned long *square; unsigned long *mat; { int n; for (n = 0; n < GF2_DIM; n++) square[n] = gf2_matrix_times(mat, mat[n]); } /* ========================================================================= */ local uLong crc32_combine_(crc1, crc2, len2) uLong crc1; uLong crc2; z_off64_t len2; { int n; unsigned long row; unsigned long even[GF2_DIM]; /* even-power-of-two zeros operator */ unsigned long odd[GF2_DIM]; /* odd-power-of-two zeros operator */ /* degenerate case (also disallow negative lengths) */ if (len2 <= 0) return crc1; /* put operator for one zero bit in odd */ odd[0] = 0xedb88320UL; /* CRC-32 polynomial */ row = 1; for (n = 1; n < GF2_DIM; n++) { odd[n] = row; row <<= 1; } /* put operator for two zero bits in even */ gf2_matrix_square(even, odd); /* put operator for four zero bits in odd */ gf2_matrix_square(odd, even); /* apply len2 zeros to crc1 (first square will put the operator for one zero byte, eight zero bits, in even) */ do { /* apply zeros operator for this bit of len2 */ gf2_matrix_square(even, odd); if (len2 & 1) crc1 = gf2_matrix_times(even, crc1); len2 >>= 1; /* if no more bits set, then done */ if (len2 == 0) break; /* another iteration of the loop with odd and even swapped */ gf2_matrix_square(odd, even); if (len2 & 1) crc1 = gf2_matrix_times(odd, crc1); len2 >>= 1; /* if no more bits set, then done */ } while (len2 != 0); /* return combined crc */ crc1 ^= crc2; return crc1; } /* ========================================================================= */ uLong ZEXPORT crc32_combine(crc1, crc2, len2) uLong crc1; uLong crc2; z_off_t len2; { return crc32_combine_(crc1, crc2, len2); } uLong ZEXPORT crc32_combine64(crc1, crc2, len2) uLong crc1; uLong crc2; z_off64_t len2; { return crc32_combine_(crc1, crc2, len2); }