VeraCrypt
aboutsummaryrefslogtreecommitdiff
path: root/src/Common/lzma/CpuArch.c
blob: 33f8a3ab4c1e986cfd97156987042563e6ea6df5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
/* CpuArch.c -- CPU specific code
2023-05-18 : Igor Pavlov : Public domain */

#include "Precomp.h"

// #include <stdio.h>

#include "CpuArch.h"

#ifdef MY_CPU_X86_OR_AMD64

#undef NEED_CHECK_FOR_CPUID
#if !defined(MY_CPU_AMD64)
#define NEED_CHECK_FOR_CPUID
#endif

/*
  cpuid instruction supports (subFunction) parameter in ECX,
  that is used only with some specific (function) parameter values.
  But we always use only (subFunction==0).
*/
/*
  __cpuid(): MSVC and GCC/CLANG use same function/macro name
             but parameters are different.
   We use MSVC __cpuid() parameters style for our z7_x86_cpuid() function.
*/

#if defined(__GNUC__) /* && (__GNUC__ >= 10) */ \
    || defined(__clang__) /* && (__clang_major__ >= 10) */

/* there was some CLANG/GCC compilers that have issues with
   rbx(ebx) handling in asm blocks in -fPIC mode (__PIC__ is defined).
   compiler's <cpuid.h> contains the macro __cpuid() that is similar to our code.
   The history of __cpuid() changes in CLANG/GCC:
   GCC:
     2007: it preserved ebx for (__PIC__ && __i386__)
     2013: it preserved rbx and ebx for __PIC__
     2014: it doesn't preserves rbx and ebx anymore
     we suppose that (__GNUC__ >= 5) fixed that __PIC__ ebx/rbx problem.
   CLANG:
     2014+: it preserves rbx, but only for 64-bit code. No __PIC__ check.
   Why CLANG cares about 64-bit mode only, and doesn't care about ebx (in 32-bit)?
   Do we need __PIC__ test for CLANG or we must care about rbx even if
   __PIC__ is not defined?
*/

#define ASM_LN "\n"
   
#if defined(MY_CPU_AMD64) && defined(__PIC__) \
    && ((defined (__GNUC__) && (__GNUC__ < 5)) || defined(__clang__))

#define x86_cpuid_MACRO(p, func) { \
  __asm__ __volatile__ ( \
    ASM_LN   "mov     %%rbx, %q1"  \
    ASM_LN   "cpuid"               \
    ASM_LN   "xchg    %%rbx, %q1"  \
    : "=a" ((p)[0]), "=&r" ((p)[1]), "=c" ((p)[2]), "=d" ((p)[3]) : "0" (func), "2"(0)); }

  /* "=&r" selects free register. It can select even rbx, if that register is free.
     "=&D" for (RDI) also works, but the code can be larger with "=&D"
     "2"(0) means (subFunction = 0),
     2 is (zero-based) index in the output constraint list "=c" (ECX). */

#elif defined(MY_CPU_X86) && defined(__PIC__) \
    && ((defined (__GNUC__) && (__GNUC__ < 5)) || defined(__clang__))

#define x86_cpuid_MACRO(p, func) { \
  __asm__ __volatile__ ( \
    ASM_LN   "mov     %%ebx, %k1"  \
    ASM_LN   "cpuid"               \
    ASM_LN   "xchg    %%ebx, %k1"  \
    : "=a" ((p)[0]), "=&r" ((p)[1]), "=c" ((p)[2]), "=d" ((p)[3]) : "0" (func), "2"(0)); }

#else

#define x86_cpuid_MACRO(p, func) { \
  __asm__ __volatile__ ( \
    ASM_LN   "cpuid"               \
    : "=a" ((p)[0]), "=b" ((p)[1]), "=c" ((p)[2]), "=d" ((p)[3]) : "0" (func), "2"(0)); }

#endif


void Z7_FASTCALL z7_x86_cpuid(UInt32 p[4], UInt32 func)
{
  x86_cpuid_MACRO(p, func)
}


Z7_NO_INLINE
UInt32 Z7_FASTCALL z7_x86_cpuid_GetMaxFunc(void)
{
 #if defined(NEED_CHECK_FOR_CPUID)
  #define EFALGS_CPUID_BIT 21
  UInt32 a;
  __asm__ __volatile__ (
    ASM_LN   "pushf"
    ASM_LN   "pushf"
    ASM_LN   "pop     %0"
    // ASM_LN   "movl    %0, %1"
    // ASM_LN   "xorl    $0x200000, %0"
    ASM_LN   "btc     %1, %0"
    ASM_LN   "push    %0"
    ASM_LN   "popf"
    ASM_LN   "pushf"
    ASM_LN   "pop     %0"
    ASM_LN   "xorl    (%%esp), %0"

    ASM_LN   "popf"
    ASM_LN
    : "=&r" (a) // "=a"
    : "i" (EFALGS_CPUID_BIT)
    );
  if ((a & (1 << EFALGS_CPUID_BIT)) == 0)
    return 0;
 #endif
  {
    UInt32 p[4];
    x86_cpuid_MACRO(p, 0)
    return p[0];
  }
}

#undef ASM_LN

#elif !defined(_MSC_VER)

/*
// for gcc/clang and other: we can try to use __cpuid macro:
#include <cpuid.h>
void Z7_FASTCALL z7_x86_cpuid(UInt32 p[4], UInt32 func)
{
  __cpuid(func, p[0], p[1], p[2], p[3]);
}
UInt32 Z7_FASTCALL z7_x86_cpuid_GetMaxFunc(void)
{
  return (UInt32)__get_cpuid_max(0, NULL);
}
*/
// for unsupported cpuid:
void Z7_FASTCALL z7_x86_cpuid(UInt32 p[4], UInt32 func)
{
  UNUSED_VAR(func)
  p[0] = p[1] = p[2] = p[3] = 0;
}
UInt32 Z7_FASTCALL z7_x86_cpuid_GetMaxFunc(void)
{
  return 0;
}

#else // _MSC_VER

#if !defined(MY_CPU_AMD64)

UInt32 __declspec(naked) Z7_FASTCALL z7_x86_cpuid_GetMaxFunc(void)
{
  #if defined(NEED_CHECK_FOR_CPUID)
  #define EFALGS_CPUID_BIT 21
  __asm   pushfd
  __asm   pushfd
  /*
  __asm   pop     eax
  // __asm   mov     edx, eax
  __asm   btc     eax, EFALGS_CPUID_BIT
  __asm   push    eax
  */
  __asm   btc     dword ptr [esp], EFALGS_CPUID_BIT
  __asm   popfd
  __asm   pushfd
  __asm   pop     eax
  // __asm   xor     eax, edx
  __asm   xor     eax, [esp]
  // __asm   push    edx
  __asm   popfd
  __asm   and     eax, (1 shl EFALGS_CPUID_BIT)
  __asm   jz end_func
  #endif
  __asm   push    ebx
  __asm   xor     eax, eax    // func
  __asm   xor     ecx, ecx    // subFunction (optional) for (func == 0)
  __asm   cpuid
  __asm   pop     ebx
  #if defined(NEED_CHECK_FOR_CPUID)
  end_func:
  #endif
  __asm   ret 0
}

void __declspec(naked) Z7_FASTCALL z7_x86_cpuid(UInt32 p[4], UInt32 func)
{
  UNUSED_VAR(p)
  UNUSED_VAR(func)
  __asm   push    ebx
  __asm   push    edi
  __asm   mov     edi, ecx    // p
  __asm   mov     eax, edx    // func
  __asm   xor     ecx, ecx    // subfunction (optional) for (func == 0)
  __asm   cpuid
  __asm   mov     [edi     ], eax
  __asm   mov     [edi +  4], ebx
  __asm   mov     [edi +  8], ecx
  __asm   mov     [edi + 12], edx
  __asm   pop     edi
  __asm   pop     ebx
  __asm   ret     0
}

#else // MY_CPU_AMD64

    #if _MSC_VER >= 1600
      #include <intrin.h>
      #define MY_cpuidex  __cpuidex
    #else
/*
 __cpuid (func == (0 or 7)) requires subfunction number in ECX.
  MSDN: The __cpuid intrinsic clears the ECX register before calling the cpuid instruction.
   __cpuid() in new MSVC clears ECX.
   __cpuid() in old MSVC (14.00) x64 doesn't clear ECX
 We still can use __cpuid for low (func) values that don't require ECX,
 but __cpuid() in old MSVC will be incorrect for some func values: (func == 7).
 So here we use the hack for old MSVC to send (subFunction) in ECX register to cpuid instruction,
 where ECX value is first parameter for FASTCALL / NO_INLINE func,
 So the caller of MY_cpuidex_HACK() sets ECX as subFunction, and
 old MSVC for __cpuid() doesn't change ECX and cpuid instruction gets (subFunction) value.
 
DON'T remove Z7_NO_INLINE and Z7_FASTCALL for MY_cpuidex_HACK(): !!!
*/
static
Z7_NO_INLINE void Z7_FASTCALL MY_cpuidex_HACK(UInt32 subFunction, UInt32 func, int *CPUInfo)
{
  UNUSED_VAR(subFunction)
  __cpuid(CPUInfo, func);
}
      #define MY_cpuidex(info, func, func2)  MY_cpuidex_HACK(func2, func, info)
      #pragma message("======== MY_cpuidex_HACK WAS USED ========")
    #endif // _MSC_VER >= 1600

#if !defined(MY_CPU_AMD64)
/* inlining for __cpuid() in MSVC x86 (32-bit) produces big ineffective code,
   so we disable inlining here */
Z7_NO_INLINE
#endif
void Z7_FASTCALL z7_x86_cpuid(UInt32 p[4], UInt32 func)
{
  MY_cpuidex((int *)p, (int)func, 0);
}

Z7_NO_INLINE
UInt32 Z7_FASTCALL z7_x86_cpuid_GetMaxFunc(void)
{
  int a[4];
  MY_cpuidex(a, 0, 0);
  return a[0];
}

#endif // MY_CPU_AMD64
#endif // _MSC_VER

#if defined(NEED_CHECK_FOR_CPUID)
#define CHECK_CPUID_IS_SUPPORTED { if (z7_x86_cpuid_GetMaxFunc() == 0) return 0; }
#else
#define CHECK_CPUID_IS_SUPPORTED
#endif
#undef NEED_CHECK_FOR_CPUID


static
BoolInt x86cpuid_Func_1(UInt32 *p)
{
  CHECK_CPUID_IS_SUPPORTED
  z7_x86_cpuid(p, 1);
  return True;
}

/*
static const UInt32 kVendors[][1] =
{
  { 0x756E6547 }, // , 0x49656E69, 0x6C65746E },
  { 0x68747541 }, // , 0x69746E65, 0x444D4163 },
  { 0x746E6543 }  // , 0x48727561, 0x736C7561 }
};
*/

/*
typedef struct
{
  UInt32 maxFunc;
  UInt32 vendor[3];
  UInt32 ver;
  UInt32 b;
  UInt32 c;
  UInt32 d;
} Cx86cpuid;

enum
{
  CPU_FIRM_INTEL,
  CPU_FIRM_AMD,
  CPU_FIRM_VIA
};
int x86cpuid_GetFirm(const Cx86cpuid *p);
#define x86cpuid_ver_GetFamily(ver) (((ver >> 16) & 0xff0) | ((ver >> 8) & 0xf))
#define x86cpuid_ver_GetModel(ver)  (((ver >> 12) &  0xf0) | ((ver >> 4) & 0xf))
#define x86cpuid_ver_GetStepping(ver) (ver & 0xf)

int x86cpuid_GetFirm(const Cx86cpuid *p)
{
  unsigned i;
  for (i = 0; i < sizeof(kVendors) / sizeof(kVendors[0]); i++)
  {
    const UInt32 *v = kVendors[i];
    if (v[0] == p->vendor[0]
        // && v[1] == p->vendor[1]
        // && v[2] == p->vendor[2]
        )
      return (int)i;
  }
  return -1;
}

BoolInt CPU_Is_InOrder()
{
  Cx86cpuid p;
  UInt32 family, model;
  if (!x86cpuid_CheckAndRead(&p))
    return True;

  family = x86cpuid_ver_GetFamily(p.ver);
  model = x86cpuid_ver_GetModel(p.ver);

  switch (x86cpuid_GetFirm(&p))
  {
    case CPU_FIRM_INTEL: return (family < 6 || (family == 6 && (
        // In-Order Atom CPU
           model == 0x1C  // 45 nm, N4xx, D4xx, N5xx, D5xx, 230, 330
        || model == 0x26  // 45 nm, Z6xx
        || model == 0x27  // 32 nm, Z2460
        || model == 0x35  // 32 nm, Z2760
        || model == 0x36  // 32 nm, N2xxx, D2xxx
        )));
    case CPU_FIRM_AMD: return (family < 5 || (family == 5 && (model < 6 || model == 0xA)));
    case CPU_FIRM_VIA: return (family < 6 || (family == 6 && model < 0xF));
  }
  return False; // v23 : unknown processors are not In-Order
}
*/

#ifdef _WIN32
#include "7zWindows.h"
#endif

#if !defined(MY_CPU_AMD64) && defined(_WIN32)

/* for legacy SSE ia32: there is no user-space cpu instruction to check
   that OS supports SSE register storing/restoring on context switches.
   So we need some OS-specific function to check that it's safe to use SSE registers.
*/

Z7_FORCE_INLINE
static BoolInt CPU_Sys_Is_SSE_Supported(void)
{
#ifdef _MSC_VER
  #pragma warning(push)
  #pragma warning(disable : 4996) // `GetVersion': was declared deprecated
#endif
  /* low byte is major version of Windows
     We suppose that any Windows version since
     Windows2000 (major == 5) supports SSE registers */
  return (Byte)GetVersion() >= 5;
#if defined(_MSC_VER)
  #pragma warning(pop)
#endif
}
#define CHECK_SYS_SSE_SUPPORT if (!CPU_Sys_Is_SSE_Supported()) return False;
#else
#define CHECK_SYS_SSE_SUPPORT
#endif


#if !defined(MY_CPU_AMD64)

BoolInt CPU_IsSupported_CMOV(void)
{
  UInt32 a[4];
  if (!x86cpuid_Func_1(&a[0]))
    return 0;
  return (a[3] >> 15) & 1;
}

BoolInt CPU_IsSupported_SSE(void)
{
  UInt32 a[4];
  CHECK_SYS_SSE_SUPPORT
  if (!x86cpuid_Func_1(&a[0]))
    return 0;
  return (a[3] >> 25) & 1;
}

BoolInt CPU_IsSupported_SSE2(void)
{
  UInt32 a[4];
  CHECK_SYS_SSE_SUPPORT
  if (!x86cpuid_Func_1(&a[0]))
    return 0;
  return (a[3] >> 26) & 1;
}

#endif


static UInt32 x86cpuid_Func_1_ECX(void)
{
  UInt32 a[4];
  CHECK_SYS_SSE_SUPPORT
  if (!x86cpuid_Func_1(&a[0]))
    return 0;
  return a[2];
}

BoolInt CPU_IsSupported_AES(void)
{
  return (x86cpuid_Func_1_ECX() >> 25) & 1;
}

BoolInt CPU_IsSupported_SSSE3(void)
{
  return (x86cpuid_Func_1_ECX() >> 9) & 1;
}

BoolInt CPU_IsSupported_SSE41(void)
{
  return (x86cpuid_Func_1_ECX() >> 19) & 1;
}

BoolInt CPU_IsSupported_SHA(void)
{
  CHECK_SYS_SSE_SUPPORT

  if (z7_x86_cpuid_GetMaxFunc() < 7)
    return False;
  {
    UInt32 d[4];
    z7_x86_cpuid(d, 7);
    return (d[1] >> 29) & 1;
  }
}

/*
MSVC: _xgetbv() intrinsic is available since VS2010SP1.
   MSVC also defines (_XCR_XFEATURE_ENABLED_MASK) macro in
   <immintrin.h> that we can use or check.
   For any 32-bit x86 we can use asm code in MSVC,
   but MSVC asm code is huge after compilation.
   So _xgetbv() is better

ICC: _xgetbv() intrinsic is available (in what version of ICC?)
   ICC defines (__GNUC___) and it supports gnu assembler
   also ICC supports MASM style code with -use-msasm switch.
   but ICC doesn't support __attribute__((__target__))

GCC/CLANG 9:
  _xgetbv() is macro that works via __builtin_ia32_xgetbv()
  and we need __attribute__((__target__("xsave")).
  But with __target__("xsave") the function will be not
  inlined to function that has no __target__("xsave") attribute.
  If we want _xgetbv() call inlining, then we should use asm version
  instead of calling _xgetbv().
  Note:intrinsic is broke before GCC 8.2:
    https://gcc.gnu.org/bugzilla/show_bug.cgi?id=85684
*/

#if    defined(__INTEL_COMPILER) && (__INTEL_COMPILER >= 1100) \
    || defined(_MSC_VER) && (_MSC_VER >= 1600) && (_MSC_FULL_VER >= 160040219)  \
    || defined(__GNUC__) && (__GNUC__ >= 9) \
    || defined(__clang__) && (__clang_major__ >= 9)
// we define ATTRIB_XGETBV, if we want to use predefined _xgetbv() from compiler
#if defined(__INTEL_COMPILER)
#define ATTRIB_XGETBV
#elif defined(__GNUC__) || defined(__clang__)
// we don't define ATTRIB_XGETBV here, because asm version is better for inlining.
// #define ATTRIB_XGETBV __attribute__((__target__("xsave")))
#else
#define ATTRIB_XGETBV
#endif
#endif

#if defined(ATTRIB_XGETBV)
#include <immintrin.h>
#endif


// XFEATURE_ENABLED_MASK/XCR0
#define MY_XCR_XFEATURE_ENABLED_MASK 0

#if defined(ATTRIB_XGETBV)
ATTRIB_XGETBV
#endif
static UInt64 x86_xgetbv_0(UInt32 num)
{
#if defined(ATTRIB_XGETBV)
  {
    return
      #if (defined(_MSC_VER))
        _xgetbv(num);
      #else
        __builtin_ia32_xgetbv(
          #if !defined(__clang__)
            (int)
          #endif
            num);
      #endif
  }

#elif defined(__GNUC__) || defined(__clang__) || defined(__SUNPRO_CC)

  UInt32 a, d;
 #if defined(__GNUC__) && (__GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 4))
  __asm__
  (
    "xgetbv"
    : "=a"(a), "=d"(d) : "c"(num) : "cc"
  );
 #else // is old gcc
  __asm__
  (
    ".byte 0x0f, 0x01, 0xd0" "\n\t"
    : "=a"(a), "=d"(d) : "c"(num) : "cc"
  );
 #endif
  return ((UInt64)d << 32) | a;
  // return a;

#elif defined(_MSC_VER) && !defined(MY_CPU_AMD64)
  
  UInt32 a, d;
  __asm {
    push eax
    push edx
    push ecx
    mov ecx, num;
    // xor ecx, ecx // = MY_XCR_XFEATURE_ENABLED_MASK
    _emit 0x0f
    _emit 0x01
    _emit 0xd0
    mov a, eax
    mov d, edx
    pop ecx
    pop edx
    pop eax
  }
  return ((UInt64)d << 32) | a;
  // return a;

#else // it's unknown compiler
  // #error "Need xgetbv function"
  UNUSED_VAR(num)
  // for MSVC-X64 we could call external function from external file.
  /* Actually we had checked OSXSAVE/AVX in cpuid before.
     So it's expected that OS supports at least AVX and below. */
  // if (num != MY_XCR_XFEATURE_ENABLED_MASK) return 0; // if not XCR0
  return
      // (1 << 0) |  // x87
        (1 << 1)   // SSE
      | (1 << 2);  // AVX
  
#endif
}

#ifdef _WIN32
/*
  Windows versions do not know about new ISA extensions that
  can be introduced. But we still can use new extensions,
  even if Windows doesn't report about supporting them,
  But we can use new extensions, only if Windows knows about new ISA extension
  that changes the number or size of registers: SSE, AVX/XSAVE, AVX512
  So it's enough to check
    MY_PF_AVX_INSTRUCTIONS_AVAILABLE
      instead of
    MY_PF_AVX2_INSTRUCTIONS_AVAILABLE
*/
#define MY_PF_XSAVE_ENABLED                            17
// #define MY_PF_SSSE3_INSTRUCTIONS_AVAILABLE             36
// #define MY_PF_SSE4_1_INSTRUCTIONS_AVAILABLE            37
// #define MY_PF_SSE4_2_INSTRUCTIONS_AVAILABLE            38
// #define MY_PF_AVX_INSTRUCTIONS_AVAILABLE               39
// #define MY_PF_AVX2_INSTRUCTIONS_AVAILABLE              40
// #define MY_PF_AVX512F_INSTRUCTIONS_AVAILABLE           41
#endif

BoolInt CPU_IsSupported_AVX(void)
{
  #ifdef _WIN32
  if (!IsProcessorFeaturePresent(MY_PF_XSAVE_ENABLED))
    return False;
  /* PF_AVX_INSTRUCTIONS_AVAILABLE probably is supported starting from
     some latest Win10 revisions. But we need AVX in older Windows also.
     So we don't use the following check: */
  /*
  if (!IsProcessorFeaturePresent(MY_PF_AVX_INSTRUCTIONS_AVAILABLE))
    return False;
  */
  #endif

  /*
    OS must use new special XSAVE/XRSTOR instructions to save
    AVX registers when it required for context switching.
    At OS statring:
      OS sets CR4.OSXSAVE flag to signal the processor that OS supports the XSAVE extensions.
      Also OS sets bitmask in XCR0 register that defines what
      registers will be processed by XSAVE instruction:
        XCR0.SSE[bit 0] - x87 registers and state
        XCR0.SSE[bit 1] - SSE registers and state
        XCR0.AVX[bit 2] - AVX registers and state
    CR4.OSXSAVE is reflected to CPUID.1:ECX.OSXSAVE[bit 27].
       So we can read that bit in user-space.
    XCR0 is available for reading in user-space by new XGETBV instruction.
  */
  {
    const UInt32 c = x86cpuid_Func_1_ECX();
    if (0 == (1
        & (c >> 28)   // AVX instructions are supported by hardware
        & (c >> 27))) // OSXSAVE bit: XSAVE and related instructions are enabled by OS.
      return False;
  }

  /* also we can check
     CPUID.1:ECX.XSAVE [bit 26] : that shows that
        XSAVE, XRESTOR, XSETBV, XGETBV instructions are supported by hardware.
     But that check is redundant, because if OSXSAVE bit is set, then XSAVE is also set */

  /* If OS have enabled XSAVE extension instructions (OSXSAVE == 1),
     in most cases we expect that OS also will support storing/restoring
     for AVX and SSE states at least.
     But to be ensure for that we call user-space instruction
     XGETBV(0) to get XCR0 value that contains bitmask that defines
     what exact states(registers) OS have enabled for storing/restoring.
  */

  {
    const UInt32 bm = (UInt32)x86_xgetbv_0(MY_XCR_XFEATURE_ENABLED_MASK);
    // printf("\n=== XGetBV=%d\n", bm);
    return 1
        & (bm >> 1)  // SSE state is supported (set by OS) for storing/restoring
        & (bm >> 2); // AVX state is supported (set by OS) for storing/restoring
  }
  // since Win7SP1: we can use GetEnabledXStateFeatures();
}


BoolInt CPU_IsSupported_AVX2(void)
{
  if (!CPU_IsSupported_AVX())
    return False;
  if (z7_x86_cpuid_GetMaxFunc() < 7)
    return False;
  {
    UInt32 d[4];
    z7_x86_cpuid(d, 7);
    // printf("\ncpuid(7): ebx=%8x ecx=%8x\n", d[1], d[2]);
    return 1
      & (d[1] >> 5); // avx2
  }
}

BoolInt CPU_IsSupported_VAES_AVX2(void)
{
  if (!CPU_IsSupported_AVX())
    return False;
  if (z7_x86_cpuid_GetMaxFunc() < 7)
    return False;
  {
    UInt32 d[4];
    z7_x86_cpuid(d, 7);
    // printf("\ncpuid(7): ebx=%8x ecx=%8x\n", d[1], d[2]);
    return 1
      & (d[1] >> 5) // avx2
      // & (d[1] >> 31) // avx512vl
      & (d[2] >> 9); // vaes // VEX-256/EVEX
  }
}

BoolInt CPU_IsSupported_PageGB(void)
{
  CHECK_CPUID_IS_SUPPORTED
  {
    UInt32 d[4];
    z7_x86_cpuid(d, 0x80000000);
    if (d[0] < 0x80000001)
      return False;
    z7_x86_cpuid(d, 0x80000001);
    return (d[3] >> 26) & 1;
  }
}


#elif defined(MY_CPU_ARM_OR_ARM64)

#ifdef _WIN32

#include "7zWindows.h"

BoolInt CPU_IsSupported_CRC32(void)  { return IsProcessorFeaturePresent(PF_ARM_V8_CRC32_INSTRUCTIONS_AVAILABLE) ? 1 : 0; }
BoolInt CPU_IsSupported_CRYPTO(void) { return IsProcessorFeaturePresent(PF_ARM_V8_CRYPTO_INSTRUCTIONS_AVAILABLE) ? 1 : 0; }
BoolInt CPU_IsSupported_NEON(void)   { return IsProcessorFeaturePresent(PF_ARM_NEON_INSTRUCTIONS_AVAILABLE) ? 1 : 0; }

#else

#if defined(__APPLE__)

/*
#include <stdio.h>
#include <string.h>
static void Print_sysctlbyname(const char *name)
{
  size_t bufSize = 256;
  char buf[256];
  int res = sysctlbyname(name, &buf, &bufSize, NULL, 0);
  {
    int i;
    printf("\nres = %d : %s : '%s' : bufSize = %d, numeric", res, name, buf, (unsigned)bufSize);
    for (i = 0; i < 20; i++)
      printf(" %2x", (unsigned)(Byte)buf[i]);

  }
}
*/
/*
  Print_sysctlbyname("hw.pagesize");
  Print_sysctlbyname("machdep.cpu.brand_string");
*/

static BoolInt z7_sysctlbyname_Get_BoolInt(const char *name)
{
  UInt32 val = 0;
  if (z7_sysctlbyname_Get_UInt32(name, &val) == 0 && val == 1)
    return 1;
  return 0;
}

BoolInt CPU_IsSupported_CRC32(void)
{
  return z7_sysctlbyname_Get_BoolInt("hw.optional.armv8_crc32");
}

BoolInt CPU_IsSupported_NEON(void)
{
  return z7_sysctlbyname_Get_BoolInt("hw.optional.neon");
}

#ifdef MY_CPU_ARM64
#define APPLE_CRYPTO_SUPPORT_VAL 1
#else
#define APPLE_CRYPTO_SUPPORT_VAL 0
#endif

BoolInt CPU_IsSupported_SHA1(void) { return APPLE_CRYPTO_SUPPORT_VAL; }
BoolInt CPU_IsSupported_SHA2(void) { return APPLE_CRYPTO_SUPPORT_VAL; }
BoolInt CPU_IsSupported_AES (void) { return APPLE_CRYPTO_SUPPORT_VAL; }


#else // __APPLE__

#include <sys/auxv.h>

#define USE_HWCAP

#ifdef USE_HWCAP

#include <asm/hwcap.h>

  #define MY_HWCAP_CHECK_FUNC_2(name1, name2) \
  BoolInt CPU_IsSupported_ ## name1() { return (getauxval(AT_HWCAP)  & (HWCAP_  ## name2)) ? 1 : 0; }

#ifdef MY_CPU_ARM64
  #define MY_HWCAP_CHECK_FUNC(name) \
  MY_HWCAP_CHECK_FUNC_2(name, name)
  MY_HWCAP_CHECK_FUNC_2(NEON, ASIMD)
// MY_HWCAP_CHECK_FUNC (ASIMD)
#elif defined(MY_CPU_ARM)
  #define MY_HWCAP_CHECK_FUNC(name) \
  BoolInt CPU_IsSupported_ ## name() { return (getauxval(AT_HWCAP2) & (HWCAP2_ ## name)) ? 1 : 0; }
  MY_HWCAP_CHECK_FUNC_2(NEON, NEON)
#endif

#else // USE_HWCAP

  #define MY_HWCAP_CHECK_FUNC(name) \
  BoolInt CPU_IsSupported_ ## name() { return 0; }
  MY_HWCAP_CHECK_FUNC(NEON)

#endif // USE_HWCAP

MY_HWCAP_CHECK_FUNC (CRC32)
MY_HWCAP_CHECK_FUNC (SHA1)
MY_HWCAP_CHECK_FUNC (SHA2)
MY_HWCAP_CHECK_FUNC (AES)

#endif // __APPLE__
#endif // _WIN32

#endif // MY_CPU_ARM_OR_ARM64



#ifdef __APPLE__

#include <sys/sysctl.h>

int z7_sysctlbyname_Get(const char *name, void *buf, size_t *bufSize)
{
  return sysctlbyname(name, buf, bufSize, NULL, 0);
}

int z7_sysctlbyname_Get_UInt32(const char *name, UInt32 *val)
{
  size_t bufSize = sizeof(*val);
  const int res = z7_sysctlbyname_Get(name, val, &bufSize);
  if (res == 0 && bufSize != sizeof(*val))
    return EFAULT;
  return res;
}

#endif