VeraCrypt
aboutsummaryrefslogtreecommitdiff
path: root/src/Common/lzma/LzmaDec.c
blob: d6742e5af8cd800a791245358ca331899ca08ca7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
/* LzmaDec.c -- LZMA Decoder
2021-04-01 : Igor Pavlov : Public domain */

#include "Precomp.h"

#include <string.h>

/* #include "CpuArch.h" */
#include "LzmaDec.h"

#define kNumTopBits 24
#define kTopValue ((UInt32)1 << kNumTopBits)

#define kNumBitModelTotalBits 11
#define kBitModelTotal (1 << kNumBitModelTotalBits)

#define RC_INIT_SIZE 5

#ifndef _LZMA_DEC_OPT

#define kNumMoveBits 5
#define NORMALIZE if (range < kTopValue) { range <<= 8; code = (code << 8) | (*buf++); }

#define IF_BIT_0(p) ttt = *(p); NORMALIZE; bound = (range >> kNumBitModelTotalBits) * (UInt32)ttt; if (code < bound)
#define UPDATE_0(p) range = bound; *(p) = (CLzmaProb)(ttt + ((kBitModelTotal - ttt) >> kNumMoveBits));
#define UPDATE_1(p) range -= bound; code -= bound; *(p) = (CLzmaProb)(ttt - (ttt >> kNumMoveBits));
#define GET_BIT2(p, i, A0, A1) IF_BIT_0(p) \
  { UPDATE_0(p); i = (i + i); A0; } else \
  { UPDATE_1(p); i = (i + i) + 1; A1; }

#define TREE_GET_BIT(probs, i) { GET_BIT2(probs + i, i, ;, ;); }

#define REV_BIT(p, i, A0, A1) IF_BIT_0(p + i) \
  { UPDATE_0(p + i); A0; } else \
  { UPDATE_1(p + i); A1; }
#define REV_BIT_VAR(  p, i, m) REV_BIT(p, i, i += m; m += m, m += m; i += m; )
#define REV_BIT_CONST(p, i, m) REV_BIT(p, i, i += m;       , i += m * 2; )
#define REV_BIT_LAST( p, i, m) REV_BIT(p, i, i -= m        , ; )

#define TREE_DECODE(probs, limit, i) \
  { i = 1; do { TREE_GET_BIT(probs, i); } while (i < limit); i -= limit; }

/* #define _LZMA_SIZE_OPT */

#ifdef _LZMA_SIZE_OPT
#define TREE_6_DECODE(probs, i) TREE_DECODE(probs, (1 << 6), i)
#else
#define TREE_6_DECODE(probs, i) \
  { i = 1; \
  TREE_GET_BIT(probs, i); \
  TREE_GET_BIT(probs, i); \
  TREE_GET_BIT(probs, i); \
  TREE_GET_BIT(probs, i); \
  TREE_GET_BIT(probs, i); \
  TREE_GET_BIT(probs, i); \
  i -= 0x40; }
#endif

#define NORMAL_LITER_DEC TREE_GET_BIT(prob, symbol)
#define MATCHED_LITER_DEC \
  matchByte += matchByte; \
  bit = offs; \
  offs &= matchByte; \
  probLit = prob + (offs + bit + symbol); \
  GET_BIT2(probLit, symbol, offs ^= bit; , ;)

#endif // _LZMA_DEC_OPT


#define NORMALIZE_CHECK if (range < kTopValue) { if (buf >= bufLimit) return DUMMY_INPUT_EOF; range <<= 8; code = (code << 8) | (*buf++); }

#define IF_BIT_0_CHECK(p) ttt = *(p); NORMALIZE_CHECK; bound = (range >> kNumBitModelTotalBits) * (UInt32)ttt; if (code < bound)
#define UPDATE_0_CHECK range = bound;
#define UPDATE_1_CHECK range -= bound; code -= bound;
#define GET_BIT2_CHECK(p, i, A0, A1) IF_BIT_0_CHECK(p) \
  { UPDATE_0_CHECK; i = (i + i); A0; } else \
  { UPDATE_1_CHECK; i = (i + i) + 1; A1; }
#define GET_BIT_CHECK(p, i) GET_BIT2_CHECK(p, i, ; , ;)
#define TREE_DECODE_CHECK(probs, limit, i) \
  { i = 1; do { GET_BIT_CHECK(probs + i, i) } while (i < limit); i -= limit; }


#define REV_BIT_CHECK(p, i, m) IF_BIT_0_CHECK(p + i) \
  { UPDATE_0_CHECK; i += m; m += m; } else \
  { UPDATE_1_CHECK; m += m; i += m; }


#define kNumPosBitsMax 4
#define kNumPosStatesMax (1 << kNumPosBitsMax)

#define kLenNumLowBits 3
#define kLenNumLowSymbols (1 << kLenNumLowBits)
#define kLenNumHighBits 8
#define kLenNumHighSymbols (1 << kLenNumHighBits)

#define LenLow 0
#define LenHigh (LenLow + 2 * (kNumPosStatesMax << kLenNumLowBits))
#define kNumLenProbs (LenHigh + kLenNumHighSymbols)

#define LenChoice LenLow
#define LenChoice2 (LenLow + (1 << kLenNumLowBits))

#define kNumStates 12
#define kNumStates2 16
#define kNumLitStates 7

#define kStartPosModelIndex 4
#define kEndPosModelIndex 14
#define kNumFullDistances (1 << (kEndPosModelIndex >> 1))

#define kNumPosSlotBits 6
#define kNumLenToPosStates 4

#define kNumAlignBits 4
#define kAlignTableSize (1 << kNumAlignBits)

#define kMatchMinLen 2
#define kMatchSpecLenStart (kMatchMinLen + kLenNumLowSymbols * 2 + kLenNumHighSymbols)

#define kMatchSpecLen_Error_Data (1 << 9)
#define kMatchSpecLen_Error_Fail (kMatchSpecLen_Error_Data - 1)

/* External ASM code needs same CLzmaProb array layout. So don't change it. */

/* (probs_1664) is faster and better for code size at some platforms */
/*
#ifdef MY_CPU_X86_OR_AMD64
*/
#define kStartOffset 1664
#define GET_PROBS p->probs_1664
/*
#define GET_PROBS p->probs + kStartOffset
#else
#define kStartOffset 0
#define GET_PROBS p->probs
#endif
*/

#define SpecPos (-kStartOffset)
#define IsRep0Long (SpecPos + kNumFullDistances)
#define RepLenCoder (IsRep0Long + (kNumStates2 << kNumPosBitsMax))
#define LenCoder (RepLenCoder + kNumLenProbs)
#define IsMatch (LenCoder + kNumLenProbs)
#define Align (IsMatch + (kNumStates2 << kNumPosBitsMax))
#define IsRep (Align + kAlignTableSize)
#define IsRepG0 (IsRep + kNumStates)
#define IsRepG1 (IsRepG0 + kNumStates)
#define IsRepG2 (IsRepG1 + kNumStates)
#define PosSlot (IsRepG2 + kNumStates)
#define Literal (PosSlot + (kNumLenToPosStates << kNumPosSlotBits))
#define NUM_BASE_PROBS (Literal + kStartOffset)

#if Align != 0 && kStartOffset != 0
  #error Stop_Compiling_Bad_LZMA_kAlign
#endif

#if NUM_BASE_PROBS != 1984
  #error Stop_Compiling_Bad_LZMA_PROBS
#endif


#define LZMA_LIT_SIZE 0x300

#define LzmaProps_GetNumProbs(p) (NUM_BASE_PROBS + ((UInt32)LZMA_LIT_SIZE << ((p)->lc + (p)->lp)))


#define CALC_POS_STATE(processedPos, pbMask) (((processedPos) & (pbMask)) << 4)
#define COMBINED_PS_STATE (posState + state)
#define GET_LEN_STATE (posState)

#define LZMA_DIC_MIN (1 << 12)

/*
p->remainLen : shows status of LZMA decoder:
    < kMatchSpecLenStart  : the number of bytes to be copied with (p->rep0) offset
    = kMatchSpecLenStart  : the LZMA stream was finished with end mark
    = kMatchSpecLenStart + 1  : need init range coder
    = kMatchSpecLenStart + 2  : need init range coder and state
    = kMatchSpecLen_Error_Fail                : Internal Code Failure
    = kMatchSpecLen_Error_Data + [0 ... 273]  : LZMA Data Error
*/

/* ---------- LZMA_DECODE_REAL ---------- */
/*
LzmaDec_DecodeReal_3() can be implemented in external ASM file.
3 - is the code compatibility version of that function for check at link time.
*/

#define LZMA_DECODE_REAL LzmaDec_DecodeReal_3

/*
LZMA_DECODE_REAL()
In:
  RangeCoder is normalized
  if (p->dicPos == limit)
  {
    LzmaDec_TryDummy() was called before to exclude LITERAL and MATCH-REP cases.
    So first symbol can be only MATCH-NON-REP. And if that MATCH-NON-REP symbol
    is not END_OF_PAYALOAD_MARKER, then the function doesn't write any byte to dictionary,
    the function returns SZ_OK, and the caller can use (p->remainLen) and (p->reps[0]) later.
  }

Processing:
  The first LZMA symbol will be decoded in any case.
  All main checks for limits are at the end of main loop,
  It decodes additional LZMA-symbols while (p->buf < bufLimit && dicPos < limit),
  RangeCoder is still without last normalization when (p->buf < bufLimit) is being checked.
  But if (p->buf < bufLimit), the caller provided at least (LZMA_REQUIRED_INPUT_MAX + 1) bytes for
  next iteration  before limit (bufLimit + LZMA_REQUIRED_INPUT_MAX),
  that is enough for worst case LZMA symbol with one additional RangeCoder normalization for one bit.
  So that function never reads bufLimit [LZMA_REQUIRED_INPUT_MAX] byte.

Out:
  RangeCoder is normalized
  Result:
    SZ_OK - OK
      p->remainLen:
        < kMatchSpecLenStart : the number of bytes to be copied with (p->reps[0]) offset
        = kMatchSpecLenStart : the LZMA stream was finished with end mark

    SZ_ERROR_DATA - error, when the MATCH-Symbol refers out of dictionary
      p->remainLen : undefined
      p->reps[*]    : undefined
*/


#ifdef _LZMA_DEC_OPT

int MY_FAST_CALL LZMA_DECODE_REAL(CLzmaDec *p, SizeT limit, const Byte *bufLimit);

#else

static
int MY_FAST_CALL LZMA_DECODE_REAL(CLzmaDec *p, SizeT limit, const Byte *bufLimit)
{
  CLzmaProb *probs = GET_PROBS;
  unsigned state = (unsigned)p->state;
  UInt32 rep0 = p->reps[0], rep1 = p->reps[1], rep2 = p->reps[2], rep3 = p->reps[3];
  unsigned pbMask = ((unsigned)1 << (p->prop.pb)) - 1;
  unsigned lc = p->prop.lc;
  unsigned lpMask = ((unsigned)0x100 << p->prop.lp) - ((unsigned)0x100 >> lc);

  Byte *dic = p->dic;
  SizeT dicBufSize = p->dicBufSize;
  SizeT dicPos = p->dicPos;
  
  UInt32 processedPos = p->processedPos;
  UInt32 checkDicSize = p->checkDicSize;
  unsigned len = 0;

  const Byte *buf = p->buf;
  UInt32 range = p->range;
  UInt32 code = p->code;

  do
  {
    CLzmaProb *prob;
    UInt32 bound;
    unsigned ttt;
    unsigned posState = CALC_POS_STATE(processedPos, pbMask);

    prob = probs + IsMatch + COMBINED_PS_STATE;
    IF_BIT_0(prob)
    {
      unsigned symbol;
      UPDATE_0(prob);
      prob = probs + Literal;
      if (processedPos != 0 || checkDicSize != 0)
        prob += (UInt32)3 * ((((processedPos << 8) + dic[(dicPos == 0 ? dicBufSize : dicPos) - 1]) & lpMask) << lc);
      processedPos++;

      if (state < kNumLitStates)
      {
        state -= (state < 4) ? state : 3;
        symbol = 1;
        #ifdef _LZMA_SIZE_OPT
        do { NORMAL_LITER_DEC } while (symbol < 0x100);
        #else
        NORMAL_LITER_DEC
        NORMAL_LITER_DEC
        NORMAL_LITER_DEC
        NORMAL_LITER_DEC
        NORMAL_LITER_DEC
        NORMAL_LITER_DEC
        NORMAL_LITER_DEC
        NORMAL_LITER_DEC
        #endif
      }
      else
      {
        unsigned matchByte = dic[dicPos - rep0 + (dicPos < rep0 ? dicBufSize : 0)];
        unsigned offs = 0x100;
        state -= (state < 10) ? 3 : 6;
        symbol = 1;
        #ifdef _LZMA_SIZE_OPT
        do
        {
          unsigned bit;
          CLzmaProb *probLit;
          MATCHED_LITER_DEC
        }
        while (symbol < 0x100);
        #else
        {
          unsigned bit;
          CLzmaProb *probLit;
          MATCHED_LITER_DEC
          MATCHED_LITER_DEC
          MATCHED_LITER_DEC
          MATCHED_LITER_DEC
          MATCHED_LITER_DEC
          MATCHED_LITER_DEC
          MATCHED_LITER_DEC
          MATCHED_LITER_DEC
        }
        #endif
      }

      dic[dicPos++] = (Byte)symbol;
      continue;
    }
    
    {
      UPDATE_1(prob);
      prob = probs + IsRep + state;
      IF_BIT_0(prob)
      {
        UPDATE_0(prob);
        state += kNumStates;
        prob = probs + LenCoder;
      }
      else
      {
        UPDATE_1(prob);
        prob = probs + IsRepG0 + state;
        IF_BIT_0(prob)
        {
          UPDATE_0(prob);
          prob = probs + IsRep0Long + COMBINED_PS_STATE;
          IF_BIT_0(prob)
          {
            UPDATE_0(prob);
  
            // that case was checked before with kBadRepCode
            // if (checkDicSize == 0 && processedPos == 0) { len = kMatchSpecLen_Error_Data + 1; break; }
            // The caller doesn't allow (dicPos == limit) case here
            // so we don't need the following check:
            // if (dicPos == limit) { state = state < kNumLitStates ? 9 : 11; len = 1; break; }
            
            dic[dicPos] = dic[dicPos - rep0 + (dicPos < rep0 ? dicBufSize : 0)];
            dicPos++;
            processedPos++;
            state = state < kNumLitStates ? 9 : 11;
            continue;
          }
          UPDATE_1(prob);
        }
        else
        {
          UInt32 distance;
          UPDATE_1(prob);
          prob = probs + IsRepG1 + state;
          IF_BIT_0(prob)
          {
            UPDATE_0(prob);
            distance = rep1;
          }
          else
          {
            UPDATE_1(prob);
            prob = probs + IsRepG2 + state;
            IF_BIT_0(prob)
            {
              UPDATE_0(prob);
              distance = rep2;
            }
            else
            {
              UPDATE_1(prob);
              distance = rep3;
              rep3 = rep2;
            }
            rep2 = rep1;
          }
          rep1 = rep0;
          rep0 = distance;
        }
        state = state < kNumLitStates ? 8 : 11;
        prob = probs + RepLenCoder;
      }
      
      #ifdef _LZMA_SIZE_OPT
      {
        unsigned lim, offset;
        CLzmaProb *probLen = prob + LenChoice;
        IF_BIT_0(probLen)
        {
          UPDATE_0(probLen);
          probLen = prob + LenLow + GET_LEN_STATE;
          offset = 0;
          lim = (1 << kLenNumLowBits);
        }
        else
        {
          UPDATE_1(probLen);
          probLen = prob + LenChoice2;
          IF_BIT_0(probLen)
          {
            UPDATE_0(probLen);
            probLen = prob + LenLow + GET_LEN_STATE + (1 << kLenNumLowBits);
            offset = kLenNumLowSymbols;
            lim = (1 << kLenNumLowBits);
          }
          else
          {
            UPDATE_1(probLen);
            probLen = prob + LenHigh;
            offset = kLenNumLowSymbols * 2;
            lim = (1 << kLenNumHighBits);
          }
        }
        TREE_DECODE(probLen, lim, len);
        len += offset;
      }
      #else
      {
        CLzmaProb *probLen = prob + LenChoice;
        IF_BIT_0(probLen)
        {
          UPDATE_0(probLen);
          probLen = prob + LenLow + GET_LEN_STATE;
          len = 1;
          TREE_GET_BIT(probLen, len);
          TREE_GET_BIT(probLen, len);
          TREE_GET_BIT(probLen, len);
          len -= 8;
        }
        else
        {
          UPDATE_1(probLen);
          probLen = prob + LenChoice2;
          IF_BIT_0(probLen)
          {
            UPDATE_0(probLen);
            probLen = prob + LenLow + GET_LEN_STATE + (1 << kLenNumLowBits);
            len = 1;
            TREE_GET_BIT(probLen, len);
            TREE_GET_BIT(probLen, len);
            TREE_GET_BIT(probLen, len);
          }
          else
          {
            UPDATE_1(probLen);
            probLen = prob + LenHigh;
            TREE_DECODE(probLen, (1 << kLenNumHighBits), len);
            len += kLenNumLowSymbols * 2;
          }
        }
      }
      #endif

      if (state >= kNumStates)
      {
        UInt32 distance;
        prob = probs + PosSlot +
            ((len < kNumLenToPosStates ? len : kNumLenToPosStates - 1) << kNumPosSlotBits);
        TREE_6_DECODE(prob, distance);
        if (distance >= kStartPosModelIndex)
        {
          unsigned posSlot = (unsigned)distance;
          unsigned numDirectBits = (unsigned)(((distance >> 1) - 1));
          distance = (2 | (distance & 1));
          if (posSlot < kEndPosModelIndex)
          {
            distance <<= numDirectBits;
            prob = probs + SpecPos;
            {
              UInt32 m = 1;
              distance++;
              do
              {
                REV_BIT_VAR(prob, distance, m);
              }
              while (--numDirectBits);
              distance -= m;
            }
          }
          else
          {
            numDirectBits -= kNumAlignBits;
            do
            {
              NORMALIZE
              range >>= 1;
              
              {
                UInt32 t;
                code -= range;
                t = (0 - ((UInt32)code >> 31)); /* (UInt32)((Int32)code >> 31) */
                distance = (distance << 1) + (t + 1);
                code += range & t;
              }
              /*
              distance <<= 1;
              if (code >= range)
              {
                code -= range;
                distance |= 1;
              }
              */
            }
            while (--numDirectBits);
            prob = probs + Align;
            distance <<= kNumAlignBits;
            {
              unsigned i = 1;
              REV_BIT_CONST(prob, i, 1);
              REV_BIT_CONST(prob, i, 2);
              REV_BIT_CONST(prob, i, 4);
              REV_BIT_LAST (prob, i, 8);
              distance |= i;
            }
            if (distance == (UInt32)0xFFFFFFFF)
            {
              len = kMatchSpecLenStart;
              state -= kNumStates;
              break;
            }
          }
        }
        
        rep3 = rep2;
        rep2 = rep1;
        rep1 = rep0;
        rep0 = distance + 1;
        state = (state < kNumStates + kNumLitStates) ? kNumLitStates : kNumLitStates + 3;
        if (distance >= (checkDicSize == 0 ? processedPos: checkDicSize))
        {
          len += kMatchSpecLen_Error_Data + kMatchMinLen;
          // len = kMatchSpecLen_Error_Data;
          // len += kMatchMinLen;
          break;
        }
      }

      len += kMatchMinLen;

      {
        SizeT rem;
        unsigned curLen;
        SizeT pos;
        
        if ((rem = limit - dicPos) == 0)
        {
          /*
          We stop decoding and return SZ_OK, and we can resume decoding later.
          Any error conditions can be tested later in caller code.
          For more strict mode we can stop decoding with error
          // len += kMatchSpecLen_Error_Data;
          */
          break;
        }
        
        curLen = ((rem < len) ? (unsigned)rem : len);
        pos = dicPos - rep0 + (dicPos < rep0 ? dicBufSize : 0);

        processedPos += (UInt32)curLen;

        len -= curLen;
        if (curLen <= dicBufSize - pos)
        {
          Byte *dest = dic + dicPos;
          ptrdiff_t src = (ptrdiff_t)pos - (ptrdiff_t)dicPos;
          const Byte *lim = dest + curLen;
          dicPos += (SizeT)curLen;
          do
            *(dest) = (Byte)*(dest + src);
          while (++dest != lim);
        }
        else
        {
          do
          {
            dic[dicPos++] = dic[pos];
            if (++pos == dicBufSize)
              pos = 0;
          }
          while (--curLen != 0);
        }
      }
    }
  }
  while (dicPos < limit && buf < bufLimit);

  NORMALIZE;
  
  p->buf = buf;
  p->range = range;
  p->code = code;
  p->remainLen = (UInt32)len; // & (kMatchSpecLen_Error_Data - 1); // we can write real length for error matches too.
  p->dicPos = dicPos;
  p->processedPos = processedPos;
  p->reps[0] = rep0;
  p->reps[1] = rep1;
  p->reps[2] = rep2;
  p->reps[3] = rep3;
  p->state = (UInt32)state;
  if (len >= kMatchSpecLen_Error_Data)
    return SZ_ERROR_DATA;
  return SZ_OK;
}
#endif



static void MY_FAST_CALL LzmaDec_WriteRem(CLzmaDec *p, SizeT limit)
{
  unsigned len = (unsigned)p->remainLen;
  if (len == 0 /* || len >= kMatchSpecLenStart */)
    return;
  {
    SizeT dicPos = p->dicPos;
    Byte *dic;
    SizeT dicBufSize;
    SizeT rep0;   /* we use SizeT to avoid the BUG of VC14 for AMD64 */
    {
      SizeT rem = limit - dicPos;
      if (rem < len)
      {
        len = (unsigned)(rem);
        if (len == 0)
          return;
      }
    }

    if (p->checkDicSize == 0 && p->prop.dicSize - p->processedPos <= len)
      p->checkDicSize = p->prop.dicSize;

    p->processedPos += (UInt32)len;
    p->remainLen -= (UInt32)len;
    dic = p->dic;
    rep0 = p->reps[0];
    dicBufSize = p->dicBufSize;
    do
    {
      dic[dicPos] = dic[dicPos - rep0 + (dicPos < rep0 ? dicBufSize : 0)];
      dicPos++;
    }
    while (--len);
    p->dicPos = dicPos;
  }
}


/*
At staring of new stream we have one of the following symbols:
  - Literal        - is allowed
  - Non-Rep-Match  - is allowed only if it's end marker symbol
  - Rep-Match      - is not allowed
We use early check of (RangeCoder:Code) over kBadRepCode to simplify main decoding code
*/

#define kRange0 0xFFFFFFFF
#define kBound0 ((kRange0 >> kNumBitModelTotalBits) << (kNumBitModelTotalBits - 1))
#define kBadRepCode (kBound0 + (((kRange0 - kBound0) >> kNumBitModelTotalBits) << (kNumBitModelTotalBits - 1)))
#if kBadRepCode != (0xC0000000 - 0x400)
  #error Stop_Compiling_Bad_LZMA_Check
#endif


/*
LzmaDec_DecodeReal2():
  It calls LZMA_DECODE_REAL() and it adjusts limit according (p->checkDicSize).

We correct (p->checkDicSize) after LZMA_DECODE_REAL() and in LzmaDec_WriteRem(),
and we support the following state of (p->checkDicSize):
  if (total_processed < p->prop.dicSize) then
  {
    (total_processed == p->processedPos)
    (p->checkDicSize == 0)
  }
  else
    (p->checkDicSize == p->prop.dicSize)
*/

static int MY_FAST_CALL LzmaDec_DecodeReal2(CLzmaDec *p, SizeT limit, const Byte *bufLimit)
{
  if (p->checkDicSize == 0)
  {
    UInt32 rem = p->prop.dicSize - p->processedPos;
    if (limit - p->dicPos > rem)
      limit = p->dicPos + rem;
  }
  {
    int res = LZMA_DECODE_REAL(p, limit, bufLimit);
    if (p->checkDicSize == 0 && p->processedPos >= p->prop.dicSize)
      p->checkDicSize = p->prop.dicSize;
    return res;
  }
}



typedef enum
{
  DUMMY_INPUT_EOF, /* need more input data */
  DUMMY_LIT,
  DUMMY_MATCH,
  DUMMY_REP
} ELzmaDummy;


#define IS_DUMMY_END_MARKER_POSSIBLE(dummyRes) ((dummyRes) == DUMMY_MATCH)

static ELzmaDummy LzmaDec_TryDummy(const CLzmaDec *p, const Byte *buf, const Byte **bufOut)
{
  UInt32 range = p->range;
  UInt32 code = p->code;
  const Byte *bufLimit = *bufOut;
  const CLzmaProb *probs = GET_PROBS;
  unsigned state = (unsigned)p->state;
  ELzmaDummy res;

  for (;;)
  {
    const CLzmaProb *prob;
    UInt32 bound;
    unsigned ttt;
    unsigned posState = CALC_POS_STATE(p->processedPos, ((unsigned)1 << p->prop.pb) - 1);

    prob = probs + IsMatch + COMBINED_PS_STATE;
    IF_BIT_0_CHECK(prob)
    {
      UPDATE_0_CHECK

      prob = probs + Literal;
      if (p->checkDicSize != 0 || p->processedPos != 0)
        prob += ((UInt32)LZMA_LIT_SIZE *
            ((((p->processedPos) & (((unsigned)1 << (p->prop.lp)) - 1)) << p->prop.lc) +
            ((unsigned)p->dic[(p->dicPos == 0 ? p->dicBufSize : p->dicPos) - 1] >> (8 - p->prop.lc))));

      if (state < kNumLitStates)
      {
        unsigned symbol = 1;
        do { GET_BIT_CHECK(prob + symbol, symbol) } while (symbol < 0x100);
      }
      else
      {
        unsigned matchByte = p->dic[p->dicPos - p->reps[0] +
            (p->dicPos < p->reps[0] ? p->dicBufSize : 0)];
        unsigned offs = 0x100;
        unsigned symbol = 1;
        do
        {
          unsigned bit;
          const CLzmaProb *probLit;
          matchByte += matchByte;
          bit = offs;
          offs &= matchByte;
          probLit = prob + (offs + bit + symbol);
          GET_BIT2_CHECK(probLit, symbol, offs ^= bit; , ; )
        }
        while (symbol < 0x100);
      }
      res = DUMMY_LIT;
    }
    else
    {
      unsigned len;
      UPDATE_1_CHECK;

      prob = probs + IsRep + state;
      IF_BIT_0_CHECK(prob)
      {
        UPDATE_0_CHECK;
        state = 0;
        prob = probs + LenCoder;
        res = DUMMY_MATCH;
      }
      else
      {
        UPDATE_1_CHECK;
        res = DUMMY_REP;
        prob = probs + IsRepG0 + state;
        IF_BIT_0_CHECK(prob)
        {
          UPDATE_0_CHECK;
          prob = probs + IsRep0Long + COMBINED_PS_STATE;
          IF_BIT_0_CHECK(prob)
          {
            UPDATE_0_CHECK;
            break;
          }
          else
          {
            UPDATE_1_CHECK;
          }
        }
        else
        {
          UPDATE_1_CHECK;
          prob = probs + IsRepG1 + state;
          IF_BIT_0_CHECK(prob)
          {
            UPDATE_0_CHECK;
          }
          else
          {
            UPDATE_1_CHECK;
            prob = probs + IsRepG2 + state;
            IF_BIT_0_CHECK(prob)
            {
              UPDATE_0_CHECK;
            }
            else
            {
              UPDATE_1_CHECK;
            }
          }
        }
        state = kNumStates;
        prob = probs + RepLenCoder;
      }
      {
        unsigned limit, offset;
        const CLzmaProb *probLen = prob + LenChoice;
        IF_BIT_0_CHECK(probLen)
        {
          UPDATE_0_CHECK;
          probLen = prob + LenLow + GET_LEN_STATE;
          offset = 0;
          limit = 1 << kLenNumLowBits;
        }
        else
        {
          UPDATE_1_CHECK;
          probLen = prob + LenChoice2;
          IF_BIT_0_CHECK(probLen)
          {
            UPDATE_0_CHECK;
            probLen = prob + LenLow + GET_LEN_STATE + (1 << kLenNumLowBits);
            offset = kLenNumLowSymbols;
            limit = 1 << kLenNumLowBits;
          }
          else
          {
            UPDATE_1_CHECK;
            probLen = prob + LenHigh;
            offset = kLenNumLowSymbols * 2;
            limit = 1 << kLenNumHighBits;
          }
        }
        TREE_DECODE_CHECK(probLen, limit, len);
        len += offset;
      }

      if (state < 4)
      {
        unsigned posSlot;
        prob = probs + PosSlot +
            ((len < kNumLenToPosStates - 1 ? len : kNumLenToPosStates - 1) <<
            kNumPosSlotBits);
        TREE_DECODE_CHECK(prob, 1 << kNumPosSlotBits, posSlot);
        if (posSlot >= kStartPosModelIndex)
        {
          unsigned numDirectBits = ((posSlot >> 1) - 1);

          if (posSlot < kEndPosModelIndex)
          {
            prob = probs + SpecPos + ((2 | (posSlot & 1)) << numDirectBits);
          }
          else
          {
            numDirectBits -= kNumAlignBits;
            do
            {
              NORMALIZE_CHECK
              range >>= 1;
              code -= range & (((code - range) >> 31) - 1);
              /* if (code >= range) code -= range; */
            }
            while (--numDirectBits);
            prob = probs + Align;
            numDirectBits = kNumAlignBits;
          }
          {
            unsigned i = 1;
            unsigned m = 1;
            do
            {
              REV_BIT_CHECK(prob, i, m);
            }
            while (--numDirectBits);
          }
        }
      }
    }
    break;
  }
  NORMALIZE_CHECK;

  *bufOut = buf;
  return res;
}

void LzmaDec_InitDicAndState(CLzmaDec *p, BoolInt initDic, BoolInt initState);
void LzmaDec_InitDicAndState(CLzmaDec *p, BoolInt initDic, BoolInt initState)
{
  p->remainLen = kMatchSpecLenStart + 1;
  p->tempBufSize = 0;

  if (initDic)
  {
    p->processedPos = 0;
    p->checkDicSize = 0;
    p->remainLen = kMatchSpecLenStart + 2;
  }
  if (initState)
    p->remainLen = kMatchSpecLenStart + 2;
}

void LzmaDec_Init(CLzmaDec *p)
{
  p->dicPos = 0;
  LzmaDec_InitDicAndState(p, True, True);
}


/*
LZMA supports optional end_marker.
So the decoder can lookahead for one additional LZMA-Symbol to check end_marker.
That additional LZMA-Symbol can require up to LZMA_REQUIRED_INPUT_MAX bytes in input stream.
When the decoder reaches dicLimit, it looks (finishMode) parameter:
  if (finishMode == LZMA_FINISH_ANY), the decoder doesn't lookahead
  if (finishMode != LZMA_FINISH_ANY), the decoder lookahead, if end_marker is possible for current position

When the decoder lookahead, and the lookahead symbol is not end_marker, we have two ways:
  1) Strict mode (default) : the decoder returns SZ_ERROR_DATA.
  2) The relaxed mode (alternative mode) : we could return SZ_OK, and the caller
     must check (status) value. The caller can show the error,
     if the end of stream is expected, and the (status) is noit
     LZMA_STATUS_FINISHED_WITH_MARK or LZMA_STATUS_MAYBE_FINISHED_WITHOUT_MARK.
*/


#define RETURN__NOT_FINISHED__FOR_FINISH \
  *status = LZMA_STATUS_NOT_FINISHED; \
  return SZ_ERROR_DATA; // for strict mode
  // return SZ_OK; // for relaxed mode


SRes LzmaDec_DecodeToDic(CLzmaDec *p, SizeT dicLimit, const Byte *src, SizeT *srcLen,
    ELzmaFinishMode finishMode, ELzmaStatus *status)
{
  SizeT inSize = *srcLen;
  (*srcLen) = 0;
  *status = LZMA_STATUS_NOT_SPECIFIED;

  if (p->remainLen > kMatchSpecLenStart)
  {
    if (p->remainLen > kMatchSpecLenStart + 2)
      return p->remainLen == kMatchSpecLen_Error_Fail ? SZ_ERROR_FAIL : SZ_ERROR_DATA;

    for (; inSize > 0 && p->tempBufSize < RC_INIT_SIZE; (*srcLen)++, inSize--)
      p->tempBuf[p->tempBufSize++] = *src++;
    if (p->tempBufSize != 0 && p->tempBuf[0] != 0)
      return SZ_ERROR_DATA;
    if (p->tempBufSize < RC_INIT_SIZE)
    {
      *status = LZMA_STATUS_NEEDS_MORE_INPUT;
      return SZ_OK;
    }
    p->code =
        ((UInt32)p->tempBuf[1] << 24)
      | ((UInt32)p->tempBuf[2] << 16)
      | ((UInt32)p->tempBuf[3] << 8)
      | ((UInt32)p->tempBuf[4]);

    if (p->checkDicSize == 0
        && p->processedPos == 0
        && p->code >= kBadRepCode)
      return SZ_ERROR_DATA;

    p->range = 0xFFFFFFFF;
    p->tempBufSize = 0;

    if (p->remainLen > kMatchSpecLenStart + 1)
    {
      SizeT numProbs = LzmaProps_GetNumProbs(&p->prop);
      SizeT i;
      CLzmaProb *probs = p->probs;
      for (i = 0; i < numProbs; i++)
        probs[i] = kBitModelTotal >> 1;
      p->reps[0] = p->reps[1] = p->reps[2] = p->reps[3] = 1;
      p->state = 0;
    }

    p->remainLen = 0;
  }

  for (;;)
  {
    if (p->remainLen == kMatchSpecLenStart)
    {
      if (p->code != 0)
        return SZ_ERROR_DATA;
      *status = LZMA_STATUS_FINISHED_WITH_MARK;
      return SZ_OK;
    }

    LzmaDec_WriteRem(p, dicLimit);

    {
      // (p->remainLen == 0 || p->dicPos == dicLimit)

      int checkEndMarkNow = 0;

      if (p->dicPos >= dicLimit)
      {
        if (p->remainLen == 0 && p->code == 0)
        {
          *status = LZMA_STATUS_MAYBE_FINISHED_WITHOUT_MARK;
          return SZ_OK;
        }
        if (finishMode == LZMA_FINISH_ANY)
        {
          *status = LZMA_STATUS_NOT_FINISHED;
          return SZ_OK;
        }
        if (p->remainLen != 0)
        {
          RETURN__NOT_FINISHED__FOR_FINISH;
        }
        checkEndMarkNow = 1;
      }

      // (p->remainLen == 0)

      if (p->tempBufSize == 0)
      {
        const Byte *bufLimit;
        int dummyProcessed = -1;
        
        if (inSize < LZMA_REQUIRED_INPUT_MAX || checkEndMarkNow)
        {
          const Byte *bufOut = src + inSize;
          
          ELzmaDummy dummyRes = LzmaDec_TryDummy(p, src, &bufOut);
          
          if (dummyRes == DUMMY_INPUT_EOF)
          {
            size_t i;
            if (inSize >= LZMA_REQUIRED_INPUT_MAX)
              break;
            (*srcLen) += inSize;
            p->tempBufSize = (unsigned)inSize;
            for (i = 0; i < inSize; i++)
              p->tempBuf[i] = src[i];
            *status = LZMA_STATUS_NEEDS_MORE_INPUT;
            return SZ_OK;
          }
 
          dummyProcessed = (int)(bufOut - src);
          if ((unsigned)dummyProcessed > LZMA_REQUIRED_INPUT_MAX)
            break;
          
          if (checkEndMarkNow && !IS_DUMMY_END_MARKER_POSSIBLE(dummyRes))
          {
            unsigned i;
            (*srcLen) += (unsigned)dummyProcessed;
            p->tempBufSize = (unsigned)dummyProcessed;
            for (i = 0; i < (unsigned)dummyProcessed; i++)
              p->tempBuf[i] = src[i];
            // p->remainLen = kMatchSpecLen_Error_Data;
            RETURN__NOT_FINISHED__FOR_FINISH;
          }
          
          bufLimit = src;
          // we will decode only one iteration
        }
        else
          bufLimit = src + inSize - LZMA_REQUIRED_INPUT_MAX;

        p->buf = src;
        
        {
          int res = LzmaDec_DecodeReal2(p, dicLimit, bufLimit);
          
          SizeT processed = (SizeT)(p->buf - src);

          if (dummyProcessed < 0)
          {
            if (processed > inSize)
              break;
          }
          else if ((unsigned)dummyProcessed != processed)
            break;

          src += processed;
          inSize -= processed;
          (*srcLen) += processed;

          if (res != SZ_OK)
          {
            p->remainLen = kMatchSpecLen_Error_Data;
            return SZ_ERROR_DATA;
          }
        }
        continue;
      }

      {
        // we have some data in (p->tempBuf)
        // in strict mode: tempBufSize is not enough for one Symbol decoding.
        // in relaxed mode: tempBufSize not larger than required for one Symbol decoding.

        unsigned rem = p->tempBufSize;
        unsigned ahead = 0;
        int dummyProcessed = -1;
        
        while (rem < LZMA_REQUIRED_INPUT_MAX && ahead < inSize)
          p->tempBuf[rem++] = src[ahead++];
        
        // ahead - the size of new data copied from (src) to (p->tempBuf)
        // rem   - the size of temp buffer including new data from (src)
        
        if (rem < LZMA_REQUIRED_INPUT_MAX || checkEndMarkNow)
        {
          const Byte *bufOut = p->tempBuf + rem;
        
          ELzmaDummy dummyRes = LzmaDec_TryDummy(p, p->tempBuf, &bufOut);
          
          if (dummyRes == DUMMY_INPUT_EOF)
          {
            if (rem >= LZMA_REQUIRED_INPUT_MAX)
              break;
            p->tempBufSize = rem;
            (*srcLen) += (SizeT)ahead;
            *status = LZMA_STATUS_NEEDS_MORE_INPUT;
            return SZ_OK;
          }
          
          dummyProcessed = (int)(bufOut - p->tempBuf);

          if ((unsigned)dummyProcessed < p->tempBufSize)
            break;

          if (checkEndMarkNow && !IS_DUMMY_END_MARKER_POSSIBLE(dummyRes))
          {
            (*srcLen) += (unsigned)dummyProcessed - p->tempBufSize;
            p->tempBufSize = (unsigned)dummyProcessed;
            // p->remainLen = kMatchSpecLen_Error_Data;
            RETURN__NOT_FINISHED__FOR_FINISH;
          }
        }

        p->buf = p->tempBuf;
        
        {
          // we decode one symbol from (p->tempBuf) here, so the (bufLimit) is equal to (p->buf)
          int res = LzmaDec_DecodeReal2(p, dicLimit, p->buf);

          SizeT processed = (SizeT)(p->buf - p->tempBuf);
          rem = p->tempBufSize;
          
          if (dummyProcessed < 0)
          {
            if (processed > LZMA_REQUIRED_INPUT_MAX)
              break;
            if (processed < rem)
              break;
          }
          else if ((unsigned)dummyProcessed != processed)
            break;
          
          processed -= rem;

          src += processed;
          inSize -= processed;
          (*srcLen) += processed;
          p->tempBufSize = 0;
          
          if (res != SZ_OK)
          {
            p->remainLen = kMatchSpecLen_Error_Data;
            return SZ_ERROR_DATA;
          }
        }
      }
    }
  }

  /*  Some unexpected error: internal error of code, memory corruption or hardware failure */
  p->remainLen = kMatchSpecLen_Error_Fail;
  return SZ_ERROR_FAIL;
}



SRes LzmaDec_DecodeToBuf(CLzmaDec *p, Byte *dest, SizeT *destLen, const Byte *src, SizeT *srcLen, ELzmaFinishMode finishMode, ELzmaStatus *status)
{
  SizeT outSize = *destLen;
  SizeT inSize = *srcLen;
  *srcLen = *destLen = 0;
  for (;;)
  {
    SizeT inSizeCur = inSize, outSizeCur, dicPos;
    ELzmaFinishMode curFinishMode;
    SRes res;
    if (p->dicPos == p->dicBufSize)
      p->dicPos = 0;
    dicPos = p->dicPos;
    if (outSize > p->dicBufSize - dicPos)
    {
      outSizeCur = p->dicBufSize;
      curFinishMode = LZMA_FINISH_ANY;
    }
    else
    {
      outSizeCur = dicPos + outSize;
      curFinishMode = finishMode;
    }

    res = LzmaDec_DecodeToDic(p, outSizeCur, src, &inSizeCur, curFinishMode, status);
    src += inSizeCur;
    inSize -= inSizeCur;
    *srcLen += inSizeCur;
    outSizeCur = p->dicPos - dicPos;
    memcpy(dest, p->dic + dicPos, outSizeCur);
    dest += outSizeCur;
    outSize -= outSizeCur;
    *destLen += outSizeCur;
    if (res != 0)
      return res;
    if (outSizeCur == 0 || outSize == 0)
      return SZ_OK;
  }
}

void LzmaDec_FreeProbs(CLzmaDec *p, ISzAllocPtr alloc)
{
  ISzAlloc_Free(alloc, p->probs);
  p->probs = NULL;
}

static void LzmaDec_FreeDict(CLzmaDec *p, ISzAllocPtr alloc)
{
  ISzAlloc_Free(alloc, p->dic);
  p->dic = NULL;
}

void LzmaDec_Free(CLzmaDec *p, ISzAllocPtr alloc)
{
  LzmaDec_FreeProbs(p, alloc);
  LzmaDec_FreeDict(p, alloc);
}

SRes LzmaProps_Decode(CLzmaProps *p, const Byte *data, unsigned size)
{
  UInt32 dicSize;
  Byte d;
  
  if (size < LZMA_PROPS_SIZE)
    return SZ_ERROR_UNSUPPORTED;
  else
    dicSize = data[1] | ((UInt32)data[2] << 8) | ((UInt32)data[3] << 16) | ((UInt32)data[4] << 24);
 
  if (dicSize < LZMA_DIC_MIN)
    dicSize = LZMA_DIC_MIN;
  p->dicSize = dicSize;

  d = data[0];
  if (d >= (9 * 5 * 5))
    return SZ_ERROR_UNSUPPORTED;

  p->lc = (Byte)(d % 9);
  d /= 9;
  p->pb = (Byte)(d / 5);
  p->lp = (Byte)(d % 5);

  return SZ_OK;
}

static SRes LzmaDec_AllocateProbs2(CLzmaDec *p, const CLzmaProps *propNew, ISzAllocPtr alloc)
{
  UInt32 numProbs = LzmaProps_GetNumProbs(propNew);
  if (!p->probs || numProbs != p->numProbs)
  {
    LzmaDec_FreeProbs(p, alloc);
    p->probs = (CLzmaProb *)ISzAlloc_Alloc(alloc, numProbs * sizeof(CLzmaProb));
    if (!p->probs)
      return SZ_ERROR_MEM;
    p->probs_1664 = p->probs + 1664;
    p->numProbs = numProbs;
  }
  return SZ_OK;
}

SRes LzmaDec_AllocateProbs(CLzmaDec *p, const Byte *props, unsigned propsSize, ISzAllocPtr alloc)
{
  CLzmaProps propNew;
  RINOK(LzmaProps_Decode(&propNew, props, propsSize));
  RINOK(LzmaDec_AllocateProbs2(p, &propNew, alloc));
  p->prop = propNew;
  return SZ_OK;
}

SRes LzmaDec_Allocate(CLzmaDec *p, const Byte *props, unsigned propsSize, ISzAllocPtr alloc)
{
  CLzmaProps propNew;
  SizeT dicBufSize;
  RINOK(LzmaProps_Decode(&propNew, props, propsSize));
  RINOK(LzmaDec_AllocateProbs2(p, &propNew, alloc));

  {
    UInt32 dictSize = propNew.dicSize;
    SizeT mask = ((UInt32)1 << 12) - 1;
         if (dictSize >= ((UInt32)1 << 30)) mask = ((UInt32)1 << 22) - 1;
    else if (dictSize >= ((UInt32)1 << 22)) mask = ((UInt32)1 << 20) - 1;;
    dicBufSize = ((SizeT)dictSize + mask) & ~mask;
    if (dicBufSize < dictSize)
      dicBufSize = dictSize;
  }

  if (!p->dic || dicBufSize != p->dicBufSize)
  {
    LzmaDec_FreeDict(p, alloc);
    p->dic = (Byte *)ISzAlloc_Alloc(alloc, dicBufSize);
    if (!p->dic)
    {
      LzmaDec_FreeProbs(p, alloc);
      return SZ_ERROR_MEM;
    }
  }
  p->dicBufSize = dicBufSize;
  p->prop = propNew;
  return SZ_OK;
}

SRes LzmaDecode(Byte *dest, SizeT *destLen, const Byte *src, SizeT *srcLen,
    const Byte *propData, unsigned propSize, ELzmaFinishMode finishMode,
    ELzmaStatus *status, ISzAllocPtr alloc)
{
  CLzmaDec p;
  SRes res;
  SizeT outSize = *destLen, inSize = *srcLen;
  *destLen = *srcLen = 0;
  *status = LZMA_STATUS_NOT_SPECIFIED;
  if (inSize < RC_INIT_SIZE)
    return SZ_ERROR_INPUT_EOF;
  LzmaDec_Construct(&p);
  RINOK(LzmaDec_AllocateProbs(&p, propData, propSize, alloc));
  p.dic = dest;
  p.dicBufSize = outSize;
  LzmaDec_Init(&p);
  *srcLen = inSize;
  res = LzmaDec_DecodeToDic(&p, outSize, src, srcLen, finishMode, status);
  *destLen = p.dicPos;
  if (res == SZ_OK && *status == LZMA_STATUS_NEEDS_MORE_INPUT)
    res = SZ_ERROR_INPUT_EOF;
  LzmaDec_FreeProbs(&p, alloc);
  return res;
}