/* * Copyright (c) 2016-2018 Positive Technologies, https://www.ptsecurity.com, * Fast Positive Hash. * * Portions Copyright (c) 2010-2018 Leonid Yuriev , * The 1Hippeus project (t1h). * * This software is provided 'as-is', without any express or implied * warranty. In no event will the authors be held liable for any damages * arising from the use of this software. * * Permission is granted to anyone to use this software for any purpose, * including commercial applications, and to alter it and redistribute it * freely, subject to the following restrictions: * * 1. The origin of this software must not be misrepresented; you must not * claim that you wrote the original software. If you use this software * in a product, an acknowledgement in the product documentation would be * appreciated but is not required. * 2. Altered source versions must be plainly marked as such, and must not be * misrepresented as being the original software. * 3. This notice may not be removed or altered from any source distribution. */ /* * t1ha = { Fast Positive Hash, aka "Позитивный Хэш" } * by [Positive Technologies](https://www.ptsecurity.ru) * * Briefly, it is a 64-bit Hash Function: * 1. Created for 64-bit little-endian platforms, in predominantly for x86_64, * but portable and without penalties it can run on any 64-bit CPU. * 2. In most cases up to 15% faster than City64, xxHash, mum-hash, metro-hash * and all others portable hash-functions (which do not use specific * hardware tricks). * 3. Not suitable for cryptography. * * The Future will Positive. Всё будет хорошо. * * ACKNOWLEDGEMENT: * The t1ha was originally developed by Leonid Yuriev (Леонид Юрьев) * for The 1Hippeus project - zerocopy messaging in the spirit of Sparta! */ #include "t1ha_bits.h" #include "t1ha_selfcheck.h" static __always_inline void init_ab(t1ha_state256_t *s, uint64_t x, uint64_t y) { s->n.a = x; s->n.b = y; } static __always_inline void init_cd(t1ha_state256_t *s, uint64_t x, uint64_t y) { s->n.c = rot64(y, 23) + ~x; s->n.d = ~y + rot64(x, 19); } /* TODO: C++ template in the next version */ #define T1HA2_UPDATE(ENDIANNES, ALIGNESS, state, v) \ do { \ t1ha_state256_t *const s = state; \ const uint64_t w0 = fetch64_##ENDIANNES##_##ALIGNESS(v + 0); \ const uint64_t w1 = fetch64_##ENDIANNES##_##ALIGNESS(v + 1); \ const uint64_t w2 = fetch64_##ENDIANNES##_##ALIGNESS(v + 2); \ const uint64_t w3 = fetch64_##ENDIANNES##_##ALIGNESS(v + 3); \ \ const uint64_t d02 = w0 + rot64(w2 + s->n.d, 56); \ const uint64_t c13 = w1 + rot64(w3 + s->n.c, 19); \ s->n.d ^= s->n.b + rot64(w1, 38); \ s->n.c ^= s->n.a + rot64(w0, 57); \ s->n.b ^= prime_6 * (c13 + w2); \ s->n.a ^= prime_5 * (d02 + w3); \ } while (0) static __always_inline void squash(t1ha_state256_t *s) { s->n.a ^= prime_6 * (s->n.c + rot64(s->n.d, 23)); s->n.b ^= prime_5 * (rot64(s->n.c, 19) + s->n.d); } /* TODO: C++ template in the next version */ #define T1HA2_LOOP(ENDIANNES, ALIGNESS, state, data, len) \ do { \ const void *detent = (const uint8_t *)data + len - 31; \ do { \ const uint64_t *v = (const uint64_t *)data; \ data = (const uint64_t *)data + 4; \ prefetch(data); \ T1HA2_UPDATE(le, ALIGNESS, state, v); \ } while (likely(data < detent)); \ } while (0) /* TODO: C++ template in the next version */ #define T1HA2_TAIL_AB(ENDIANNES, ALIGNESS, state, data, len) \ do { \ t1ha_state256_t *const s = state; \ const uint64_t *v = (const uint64_t *)data; \ switch (len) { \ default: \ mixup64(&s->n.a, &s->n.b, fetch64_##ENDIANNES##_##ALIGNESS(v++), \ prime_4); \ /* fall through */ \ case 24: \ case 23: \ case 22: \ case 21: \ case 20: \ case 19: \ case 18: \ case 17: \ mixup64(&s->n.b, &s->n.a, fetch64_##ENDIANNES##_##ALIGNESS(v++), \ prime_3); \ /* fall through */ \ case 16: \ case 15: \ case 14: \ case 13: \ case 12: \ case 11: \ case 10: \ case 9: \ mixup64(&s->n.a, &s->n.b, fetch64_##ENDIANNES##_##ALIGNESS(v++), \ prime_2); \ /* fall through */ \ case 8: \ case 7: \ case 6: \ case 5: \ case 4: \ case 3: \ case 2: \ case 1: \ mixup64(&s->n.b, &s->n.a, tail64_##ENDIANNES##_##ALIGNESS(v, len), \ prime_1); \ /* fall through */ \ case 0: \ return final64(s->n.a, s->n.b); \ } \ } while (0) /* TODO: C++ template in the next version */ #define T1HA2_TAIL_ABCD(ENDIANNES, ALIGNESS, state, data, len) \ do { \ t1ha_state256_t *const s = state; \ const uint64_t *v = (const uint64_t *)data; \ switch (len) { \ default: \ mixup64(&s->n.a, &s->n.d, fetch64_##ENDIANNES##_##ALIGNESS(v++), \ prime_4); \ /* fall through */ \ case 24: \ case 23: \ case 22: \ case 21: \ case 20: \ case 19: \ case 18: \ case 17: \ mixup64(&s->n.b, &s->n.a, fetch64_##ENDIANNES##_##ALIGNESS(v++), \ prime_3); \ /* fall through */ \ case 16: \ case 15: \ case 14: \ case 13: \ case 12: \ case 11: \ case 10: \ case 9: \ mixup64(&s->n.c, &s->n.b, fetch64_##ENDIANNES##_##ALIGNESS(v++), \ prime_2); \ /* fall through */ \ case 8: \ case 7: \ case 6: \ case 5: \ case 4: \ case 3: \ case 2: \ case 1: \ mixup64(&s->n.d, &s->n.c, tail64_##ENDIANNES##_##ALIGNESS(v, len), \ prime_1); \ /* fall through */ \ case 0: \ return final128(s->n.a, s->n.b, s->n.c, s->n.d, extra_result); \ } \ } while (0) static __always_inline uint64_t final128(uint64_t a, uint64_t b, uint64_t c, uint64_t d, uint64_t *h) { mixup64(&a, &b, rot64(c, 41) ^ d, prime_0); mixup64(&b, &c, rot64(d, 23) ^ a, prime_6); mixup64(&c, &d, rot64(a, 19) ^ b, prime_5); mixup64(&d, &a, rot64(b, 31) ^ c, prime_4); *h = c + d; return a ^ b; } //------------------------------------------------------------------------------ uint64_t t1ha2_atonce(const void *data, size_t length, uint64_t seed) { t1ha_state256_t state; init_ab(&state, seed, length); #if T1HA_SYS_UNALIGNED_ACCESS == T1HA_UNALIGNED_ACCESS__EFFICIENT if (unlikely(length > 32)) { init_cd(&state, seed, length); T1HA2_LOOP(le, unaligned, &state, data, length); squash(&state); length &= 31; } T1HA2_TAIL_AB(le, unaligned, &state, data, length); #else if ((((uintptr_t)data) & (ALIGNMENT_64 - 1)) != 0) { if (unlikely(length > 32)) { init_cd(&state, seed, length); T1HA2_LOOP(le, unaligned, &state, data, length); squash(&state); length &= 31; } T1HA2_TAIL_AB(le, unaligned, &state, data, length); } else { if (unlikely(length > 32)) { init_cd(&state, seed, length); T1HA2_LOOP(le, aligned, &state, data, length); squash(&state); length &= 31; } T1HA2_TAIL_AB(le, aligned, &state, data, length); } #endif } uint64_t t1ha2_atonce128(uint64_t *__restrict extra_result, const void *__restrict data, size_t length, uint64_t seed) { t1ha_state256_t state; init_ab(&state, seed, length); init_cd(&state, seed, length); #if T1HA_SYS_UNALIGNED_ACCESS == T1HA_UNALIGNED_ACCESS__EFFICIENT if (unlikely(length > 32)) { T1HA2_LOOP(le, unaligned, &state, data, length); length &= 31; } T1HA2_TAIL_ABCD(le, unaligned, &state, data, length); #else if ((((uintptr_t)data) & (ALIGNMENT_64 - 1)) != 0) { if (unlikely(length > 32)) { T1HA2_LOOP(le, unaligned, &state, data, length); length &= 31; } T1HA2_TAIL_ABCD(le, unaligned, &state, data, length); } else { if (unlikely(length > 32)) { T1HA2_LOOP(le, aligned, &state, data, length); length &= 31; } T1HA2_TAIL_ABCD(le, aligned, &state, data, length); } #endif } //------------------------------------------------------------------------------ void t1ha2_init(t1ha_context_t *ctx, uint64_t seed_x, uint64_t seed_y) { init_ab(&ctx->state, seed_x, seed_y); init_cd(&ctx->state, seed_x, seed_y); ctx->partial = 0; ctx->total = 0; } void t1ha2_update(t1ha_context_t *__restrict ctx, const void *__restrict data, size_t length) { ctx->total += length; if (ctx->partial) { const size_t left = 32 - ctx->partial; const size_t chunk = (length >= left) ? left : length; memcpy(ctx->buffer.bytes + ctx->partial, data, chunk); ctx->partial += chunk; if (ctx->partial < 32) { assert(left >= length); return; } ctx->partial = 0; data = (const uint8_t *)data + chunk; length -= chunk; T1HA2_UPDATE(le, aligned, &ctx->state, ctx->buffer.u64); } if (length >= 32) { #if T1HA_SYS_UNALIGNED_ACCESS == T1HA_UNALIGNED_ACCESS__EFFICIENT T1HA2_LOOP(le, unaligned, &ctx->state, data, length); #else if ((((uintptr_t)data) & (ALIGNMENT_64 - 1)) != 0) { T1HA2_LOOP(le, unaligned, &ctx->state, data, length); } else { T1HA2_LOOP(le, aligned, &ctx->state, data, length); } #endif length &= 31; } if (length) memcpy(ctx->buffer.bytes, data, ctx->partial = length); } uint64_t t1ha2_final(t1ha_context_t *__restrict ctx, uint64_t *__restrict extra_result) { uint64_t bits = (ctx->total << 3) ^ (UINT64_C(1) << 63); #if __BYTE_ORDER__ != __ORDER_LITTLE_ENDIAN__ bits = bswap64(bits); #endif t1ha2_update(ctx, &bits, 8); if (likely(!extra_result)) { squash(&ctx->state); T1HA2_TAIL_AB(le, aligned, &ctx->state, ctx->buffer.u64, ctx->partial); } T1HA2_TAIL_ABCD(le, aligned, &ctx->state, ctx->buffer.u64, ctx->partial); }