;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ; Copyright (c) 2012, Intel Corporation ; ; All rights reserved. ; ; Redistribution and use in source and binary forms, with or without ; modification, are permitted provided that the following conditions are ; met: ; ; * Redistributions of source code must retain the above copyright ; notice, this list of conditions and the following disclaimer. ; ; * Redistributions in binary form must reproduce the above copyright ; notice, this list of conditions and the following disclaimer in the ; documentation and/or other materials provided with the ; distribution. ; ; * Neither the name of the Intel Corporation nor the names of its ; contributors may be used to endorse or promote products derived from ; this software without specific prior written permission. ; ; ; THIS SOFTWARE IS PROVIDED BY INTEL CORPORATION "AS IS" AND ANY ; EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE ; IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR ; PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL CORPORATION OR ; CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, ; EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, ; PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR ; PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF ; LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING ; NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS ; SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ; ; Example YASM command lines: ; Windows: yasm -f x64 -D WINABI sha512_avx.asm ; Linux: yasm -f elf64 sha512_avx.asm ; BITS 64 section .text ; Virtual Registers %ifdef WINABI %define msg rcx ; ARG1 %define digest rdx ; ARG2 %define msglen r8 ; ARG3 %define T1 rsi %define T2 rdi %else %define msg rdi ; ARG1 %define digest rsi ; ARG2 %define msglen rdx ; ARG3 %define T1 rcx %define T2 r8 %endif %define a_64 r9 %define b_64 r10 %define c_64 r11 %define d_64 r12 %define e_64 r13 %define f_64 r14 %define g_64 r15 %define h_64 rbx %define tmp0 rax ; Local variables (stack frame) ; Note: frame_size must be an odd multiple of 8 bytes to XMM align RSP struc frame .W: resq 80 ; Message Schedule .WK: resq 2 ; W[t] + K[t] | W[t+1] + K[t+1] %ifdef WINABI .XMMSAVE: resdq 4 .GPRSAVE: resq 7 %else .GPRSAVE: resq 5 %endif endstruc ; Useful QWORD "arrays" for simpler memory references %define MSG(i) msg + 8*(i) ; Input message (arg1) %define DIGEST(i) digest + 8*(i) ; Output Digest (arg2) %define K_t(i) K512 + 8*(i) wrt rip ; SHA Constants (static mem) %define W_t(i) rsp + frame.W + 8*(i) ; Message Schedule (stack frame) %define WK_2(i) rsp + frame.WK + 8*((i) % 2) ; W[t]+K[t] (stack frame) ; MSG, DIGEST, K_t, W_t are arrays ; WK_2(t) points to 1 of 2 qwords at frame.WK depdending on t being odd/even %macro RotateState 0 ; Rotate symbles a..h right %xdefine %%TMP h_64 %xdefine h_64 g_64 %xdefine g_64 f_64 %xdefine f_64 e_64 %xdefine e_64 d_64 %xdefine d_64 c_64 %xdefine c_64 b_64 %xdefine b_64 a_64 %xdefine a_64 %%TMP %endmacro %macro RORQ 2 ; shld is faster than ror on Sandybridge shld %1, %1, (64 - %2) %endmacro %macro SHA512_Round 1 %assign %%t (%1) ; Compute Round %%t mov T1, f_64 ; T1 = f mov tmp0, e_64 ; tmp = e xor T1, g_64 ; T1 = f ^ g RORQ tmp0, 23 ; 41 ; tmp = e ror 23 and T1, e_64 ; T1 = (f ^ g) & e xor tmp0, e_64 ; tmp = (e ror 23) ^ e xor T1, g_64 ; T1 = ((f ^ g) & e) ^ g = CH(e,f,g) add T1, [WK_2(%%t)] ; W[t] + K[t] from message scheduler RORQ tmp0, 4 ; 18 ; tmp = ((e ror 23) ^ e) ror 4 xor tmp0, e_64 ; tmp = (((e ror 23) ^ e) ror 4) ^ e mov T2, a_64 ; T2 = a add T1, h_64 ; T1 = CH(e,f,g) + W[t] + K[t] + h RORQ tmp0, 14 ; 14 ; tmp = ((((e ror23)^e)ror4)^e)ror14 = S1(e) add T1, tmp0 ; T1 = CH(e,f,g) + W[t] + K[t] + S1(e) mov tmp0, a_64 ; tmp = a xor T2, c_64 ; T2 = a ^ c and tmp0, c_64 ; tmp = a & c and T2, b_64 ; T2 = (a ^ c) & b xor T2, tmp0 ; T2 = ((a ^ c) & b) ^ (a & c) = Maj(a,b,c) mov tmp0, a_64 ; tmp = a RORQ tmp0, 5 ; 39 ; tmp = a ror 5 xor tmp0, a_64 ; tmp = (a ror 5) ^ a add d_64, T1 ; e(next_state) = d + T1 RORQ tmp0, 6 ; 34 ; tmp = ((a ror 5) ^ a) ror 6 xor tmp0, a_64 ; tmp = (((a ror 5) ^ a) ror 6) ^ a lea h_64, [T1 + T2] ; a(next_state) = T1 + Maj(a,b,c) RORQ tmp0, 28 ; 28 ; tmp = ((((a ror5)^a)ror6)^a)ror28 = S0(a) add h_64, tmp0 ; a(next_state) = T1 + Maj(a,b,c) S0(a) RotateState %endmacro %macro SHA512_2Sched_2Round_avx 1 %assign %%t %1 ; Compute rounds %%t-2 and %%t-1 ; Compute message schedule QWORDS %%t and %%t+1 ; Two rounds are computed based on the values for K[t-2]+W[t-2] and ; K[t-1]+W[t-1] which were previously stored at WK_2 by the message ; scheduler. ; The two new schedule QWORDS are stored at [W_t(%%t)] and [W_t(%%t+1)]. ; They are then added to their respective SHA512 constants at ; [K_t(%%t)] and [K_t(%%t+1)] and stored at dqword [WK_2(%%t)] ; For brievity, the comments following vectored instructions only refer to ; the first of a pair of QWORDS. ; Eg. XMM4=W[t-2] really means XMM4={W[t-2]|W[t-1]} ; The computation of the message schedule and the rounds are tightly ; stitched to take advantage of instruction-level parallelism. ; For clarity, integer instructions (for the rounds calculation) are indented ; by one tab. Vectored instructions (for the message scheduler) are indented ; by two tabs. vmovdqa xmm4, [W_t(%%t-2)] ; XMM4 = W[t-2] vmovdqu xmm5, [W_t(%%t-15)] ; XMM5 = W[t-15] mov T1, f_64 vpsrlq xmm0, xmm4, 61 ; XMM0 = W[t-2]>>61 mov tmp0, e_64 vpsrlq xmm6, xmm5, 1 ; XMM6 = W[t-15]>>1 xor T1, g_64 RORQ tmp0, 23 ; 41 vpsrlq xmm1, xmm4, 19 ; XMM1 = W[t-2]>>19 and T1, e_64 xor tmp0, e_64 vpxor xmm0, xmm1 ; XMM0 = W[t-2]>>61 ^ W[t-2]>>19 xor T1, g_64 add T1, [WK_2(%%t)]; vpsrlq xmm7, xmm5, 8 ; XMM7 = W[t-15]>>8 RORQ tmp0, 4 ; 18 vpsrlq xmm2, xmm4, 6 ; XMM2 = W[t-2]>>6 xor tmp0, e_64 mov T2, a_64 add T1, h_64 vpxor xmm6, xmm7 ; XMM6 = W[t-15]>>1 ^ W[t-15]>>8 RORQ tmp0, 14 ; 14 add T1, tmp0 vpsrlq xmm8, xmm5, 7 ; XMM8 = W[t-15]>>7 mov tmp0, a_64 xor T2, c_64 vpsllq xmm3, xmm4, (64-61) ; XMM3 = W[t-2]<<3 and tmp0, c_64 and T2, b_64 vpxor xmm2, xmm3 ; XMM2 = W[t-2]>>6 ^ W[t-2]<<3 xor T2, tmp0 mov tmp0, a_64 vpsllq xmm9, xmm5, (64-1) ; XMM9 = W[t-15]<<63 RORQ tmp0, 5 ; 39 vpxor xmm8, xmm9 ; XMM8 = W[t-15]>>7 ^ W[t-15]<<63 xor tmp0, a_64 add d_64, T1 RORQ tmp0, 6 ; 34 xor tmp0, a_64 vpxor xmm6, xmm8 ; XMM6 = W[t-15]>>1 ^ W[t-15]>>8 ^ W[t-15]>>7 ^ W[t-15]<<63 lea h_64, [T1 + T2] RORQ tmp0, 28 ; 28 vpsllq xmm4, (64-19) ; XMM4 = W[t-2]<<25 add h_64, tmp0 RotateState vpxor xmm0, xmm4 ; XMM0 = W[t-2]>>61 ^ W[t-2]>>19 ^ W[t-2]<<25 mov T1, f_64 vpxor xmm0, xmm2 ; XMM0 = s1(W[t-2]) mov tmp0, e_64 xor T1, g_64 vpaddq xmm0, [W_t(%%t-16)] ; XMM0 = s1(W[t-2]) + W[t-16] vmovdqu xmm1, [W_t(%%t- 7)] ; XMM1 = W[t-7] RORQ tmp0, 23 ; 41 and T1, e_64 xor tmp0, e_64 xor T1, g_64 vpsllq xmm5, (64-8) ; XMM5 = W[t-15]<<56 add T1, [WK_2(%%t+1)] vpxor xmm6, xmm5 ; XMM6 = s0(W[t-15]) RORQ tmp0, 4 ; 18 vpaddq xmm0, xmm6 ; XMM0 = s1(W[t-2]) + W[t-16] + s0(W[t-15]) xor tmp0, e_64 vpaddq xmm0, xmm1 ; XMM0 = W[t] = s1(W[t-2]) + W[t-7] + s0(W[t-15]) + W[t-16] mov T2, a_64 add T1, h_64 RORQ tmp0, 14 ; 14 add T1, tmp0 vmovdqa [W_t(%%t)], xmm0 ; Store W[t] vpaddq xmm0, [K_t(t)] ; Compute W[t]+K[t] vmovdqa [WK_2(t)], xmm0 ; Store W[t]+K[t] for next rounds mov tmp0, a_64 xor T2, c_64 and tmp0, c_64 and T2, b_64 xor T2, tmp0 mov tmp0, a_64 RORQ tmp0, 5 ; 39 xor tmp0, a_64 add d_64, T1 RORQ tmp0, 6 ; 34 xor tmp0, a_64 lea h_64, [T1 + T2] RORQ tmp0, 28 ; 28 add h_64, tmp0 RotateState %endmacro ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ; void sha512_avx(const void* M, void* D, uint64_t L); ; Purpose: Updates the SHA512 digest stored at D with the message stored in M. ; The size of the message pointed to by M must be an integer multiple of SHA512 ; message blocks. ; L is the message length in SHA512 blocks global sha512_avx:function sha512_avx: cmp msglen, 0 je .nowork ; Allocate Stack Space sub rsp, frame_size ; Save GPRs mov [rsp + frame.GPRSAVE + 8 * 0], rbx mov [rsp + frame.GPRSAVE + 8 * 1], r12 mov [rsp + frame.GPRSAVE + 8 * 2], r13 mov [rsp + frame.GPRSAVE + 8 * 3], r14 mov [rsp + frame.GPRSAVE + 8 * 4], r15 %ifdef WINABI mov [rsp + frame.GPRSAVE + 8 * 5], rsi mov [rsp + frame.GPRSAVE + 8 * 6], rdi %endif ; Save XMMs %ifdef WINABI vmovdqa [rsp + frame.XMMSAVE + 16 * 0], xmm6 vmovdqa [rsp + frame.XMMSAVE + 16 * 1], xmm7 vmovdqa [rsp + frame.XMMSAVE + 16 * 2], xmm8 vmovdqa [rsp + frame.XMMSAVE + 16 * 3], xmm9 %endif .updateblock: ; Load state variables mov a_64, [DIGEST(0)] mov b_64, [DIGEST(1)] mov c_64, [DIGEST(2)] mov d_64, [DIGEST(3)] mov e_64, [DIGEST(4)] mov f_64, [DIGEST(5)] mov g_64, [DIGEST(6)] mov h_64, [DIGEST(7)] %assign t 0 %rep 80/2 + 1 ; (80 rounds) / (2 rounds/iteration) + (1 iteration) ; +1 iteration because the scheduler leads hashing by 1 iteration %if t < 2 ; BSWAP 2 QWORDS vmovdqa xmm1, [XMM_QWORD_BSWAP wrt rip] vmovdqu xmm0, [MSG(t)] vpshufb xmm0, xmm0, xmm1 ; BSWAP vmovdqa [W_t(t)], xmm0 ; Store Scheduled Pair vpaddq xmm0, xmm0, [K_t(t)] ; Compute W[t]+K[t] vmovdqa [WK_2(t)], xmm0 ; Store into WK for rounds %elif t < 16 ; BSWAP 2 QWORDS, Compute 2 Rounds vmovdqu xmm0, [MSG(t)] vpshufb xmm0, xmm0, xmm1 ; BSWAP SHA512_Round t - 2 ; Round t-2 vmovdqa [W_t(t)], xmm0 ; Store Scheduled Pair vpaddq xmm0, xmm0, [K_t(t)] ; Compute W[t]+K[t] SHA512_Round t - 1 ; Round t-1 vmovdqa [WK_2(t)], xmm0 ; W[t]+K[t] into WK %elif t < 79 ; Schedule 2 QWORDS; Compute 2 Rounds SHA512_2Sched_2Round_avx t %else ; Compute 2 Rounds SHA512_Round t - 2 SHA512_Round t - 1 %endif %assign t t+2 %endrep ; Update digest add [DIGEST(0)], a_64 add [DIGEST(1)], b_64 add [DIGEST(2)], c_64 add [DIGEST(3)], d_64 add [DIGEST(4)], e_64 add [DIGEST(5)], f_64 add [DIGEST(6)], g_64 add [DIGEST(7)], h_64 ; Advance to next message block add msg, 16*8 dec msglen jnz .updateblock ; Restore XMMs %ifdef WINABI vmovdqa xmm6, [rsp + frame.XMMSAVE + 16 * 0] vmovdqa xmm7, [rsp + frame.XMMSAVE + 16 * 1] vmovdqa xmm8, [rsp + frame.XMMSAVE + 16 * 2] vmovdqa xmm9, [rsp + frame.XMMSAVE + 16 * 3] %endif ; Restore GPRs mov rbx, [rsp + frame.GPRSAVE + 8 * 0] mov r12, [rsp + frame.GPRSAVE + 8 * 1] mov r13, [rsp + frame.GPRSAVE + 8 * 2] mov r14, [rsp + frame.GPRSAVE + 8 * 3] mov r15, [rsp + frame.GPRSAVE + 8 * 4] %ifdef WINABI mov rsi, [rsp + frame.GPRSAVE + 8 * 5] mov rdi, [rsp + frame.GPRSAVE + 8 * 6] %endif ; Restore Stack Pointer add rsp, frame_size .nowork: ret ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;;; Binary Data section .data ALIGN 16 ; Mask for byte-swapping a couple of qwords in an XMM register using (v)pshufb. XMM_QWORD_BSWAP: ddq 0x08090a0b0c0d0e0f0001020304050607 ; K[t] used in SHA512 hashing K512: dq 0x428a2f98d728ae22,0x7137449123ef65cd dq 0xb5c0fbcfec4d3b2f,0xe9b5dba58189dbbc dq 0x3956c25bf348b538,0x59f111f1b605d019 dq 0x923f82a4af194f9b,0xab1c5ed5da6d8118 dq 0xd807aa98a3030242,0x12835b0145706fbe dq 0x243185be4ee4b28c,0x550c7dc3d5ffb4e2 dq 0x72be5d74f27b896f,0x80deb1fe3b1696b1 dq 0x9bdc06a725c71235,0xc19bf174cf692694 dq 0xe49b69c19ef14ad2,0xefbe4786384f25e3 dq 0x0fc19dc68b8cd5b5,0x240ca1cc77ac9c65 dq 0x2de92c6f592b0275,0x4a7484aa6ea6e483 dq 0x5cb0a9dcbd41fbd4,0x76f988da831153b5 dq 0x983e5152ee66dfab,0xa831c66d2db43210 dq 0xb00327c898fb213f,0xbf597fc7beef0ee4 dq 0xc6e00bf33da88fc2,0xd5a79147930aa725 dq 0x06ca6351e003826f,0x142929670a0e6e70 dq 0x27b70a8546d22ffc,0x2e1b21385c26c926 dq 0x4d2c6dfc5ac42aed,0x53380d139d95b3df dq 0x650a73548baf63de,0x766a0abb3c77b2a8 dq 0x81c2c92e47edaee6,0x92722c851482353b dq 0xa2bfe8a14cf10364,0xa81a664bbc423001 dq 0xc24b8b70d0f89791,0xc76c51a30654be30 dq 0xd192e819d6ef5218,0xd69906245565a910 dq 0xf40e35855771202a,0x106aa07032bbd1b8 dq 0x19a4c116b8d2d0c8,0x1e376c085141ab53 dq 0x2748774cdf8eeb99,0x34b0bcb5e19b48a8 dq 0x391c0cb3c5c95a63,0x4ed8aa4ae3418acb dq 0x5b9cca4f7763e373,0x682e6ff3d6b2b8a3 dq 0x748f82ee5defb2fc,0x78a5636f43172f60 dq 0x84c87814a1f0ab72,0x8cc702081a6439ec dq 0x90befffa23631e28,0xa4506cebde82bde9 dq 0xbef9a3f7b2c67915,0xc67178f2e372532b dq 0xca273eceea26619c,0xd186b8c721c0c207 dq 0xeada7dd6cde0eb1e,0xf57d4f7fee6ed178 dq 0x06f067aa72176fba,0x0a637dc5a2c898a6 dq 0x113f9804bef90dae,0x1b710b35131c471b dq 0x28db77f523047d84,0x32caab7b40c72493 dq 0x3c9ebe0a15c9bebc,0x431d67c49c100d4c dq 0x4cc5d4becb3e42b6,0x597f299cfc657e2a dq 0x5fcb6fab3ad6faec,0x6c44198c4a475817 %ifidn __OUTPUT_FORMAT__,elf section .note.GNU-stack noalloc noexec nowrite progbits %endif %ifidn __OUTPUT_FORMAT__,elf32 section .note.GNU-stack noalloc noexec nowrite progbits %endif %ifidn __OUTPUT_FORMAT__,elf64 section .note.GNU-stack noalloc noexec nowrite progbits %endif