;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ; Copyright (c) 2012, Intel Corporation ; ; All rights reserved. ; ; Redistribution and use in source and binary forms, with or without ; modification, are permitted provided that the following conditions are ; met: ; ; * Redistributions of source code must retain the above copyright ; notice, this list of conditions and the following disclaimer. ; ; * Redistributions in binary form must reproduce the above copyright ; notice, this list of conditions and the following disclaimer in the ; documentation and/or other materials provided with the ; distribution. ; ; * Neither the name of the Intel Corporation nor the names of its ; contributors may be used to endorse or promote products derived from ; this software without specific prior written permission. ; ; ; THIS SOFTWARE IS PROVIDED BY INTEL CORPORATION "AS IS" AND ANY ; EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE ; IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR ; PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL CORPORATION OR ; CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, ; EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, ; PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR ; PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF ; LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING ; NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS ; SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ; ; Example YASM command lines: ; Windows: yasm -Xvc -f x64 -rnasm -pnasm -o sha256_avx1.obj -g cv8 sha256_avx1.asm ; Linux: yasm -f x64 -f elf64 -X gnu -g dwarf2 -D LINUX -o sha256_avx1.o sha256_avx1.asm ; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ; ; This code is described in an Intel White-Paper: ; "Fast SHA-256 Implementations on Intel Architecture Processors" ; ; To find it, surf to http://www.intel.com/p/en_US/embedded ; and search for that title. ; The paper is expected to be released roughly at the end of April, 2012 ; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ; This code schedules 1 blocks at a time, with 4 lanes per block ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; %define VMOVDQ vmovdqu ;; assume buffers not aligned ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; Define Macros ; addm [mem], reg ; Add reg to mem using reg-mem add and store %macro addm 2 add %2, %1 mov %1, %2 %endm %macro MY_ROR 2 shld %1,%1,(32-(%2)) %endm ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ; COPY_XMM_AND_BSWAP xmm, [mem], byte_flip_mask ; Load xmm with mem and byte swap each dword %macro COPY_XMM_AND_BSWAP 3 VMOVDQ %1, %2 vpshufb %1, %1, %3 %endmacro ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; %define X0 xmm4 %define X1 xmm5 %define X2 xmm6 %define X3 xmm7 %define XTMP0 xmm0 %define XTMP1 xmm1 %define XTMP2 xmm2 %define XTMP3 xmm3 %define XTMP4 xmm8 %define XFER xmm9 %define XTMP5 xmm11 %define SHUF_00BA xmm10 ; shuffle xBxA -> 00BA %define SHUF_DC00 xmm12 ; shuffle xDxC -> DC00 %define BYTE_FLIP_MASK xmm13 %ifndef WINABI %define NUM_BLKS rdx ; 3rd arg %define CTX rsi ; 2nd arg %define INP rdi ; 1st arg %define SRND rdi ; clobbers INP %define c ecx %define d r8d %define e edx %else %define NUM_BLKS r8 ; 3rd arg %define CTX rdx ; 2nd arg %define INP rcx ; 1st arg %define SRND rcx ; clobbers INP %define c edi %define d esi %define e r8d %endif %define TBL rbp %define a eax %define b ebx %define f r9d %define g r10d %define h r11d %define y0 r13d %define y1 r14d %define y2 r15d _INP_END_SIZE equ 8 _INP_SIZE equ 8 _XFER_SIZE equ 8 %ifndef WINABI _XMM_SAVE_SIZE equ 0 %else _XMM_SAVE_SIZE equ 8*16 %endif ; STACK_SIZE plus pushes must be an odd multiple of 8 _ALIGN_SIZE equ 8 _INP_END equ 0 _INP equ _INP_END + _INP_END_SIZE _XFER equ _INP + _INP_SIZE _XMM_SAVE equ _XFER + _XFER_SIZE + _ALIGN_SIZE STACK_SIZE equ _XMM_SAVE + _XMM_SAVE_SIZE ; rotate_Xs ; Rotate values of symbols X0...X3 %macro rotate_Xs 0 %xdefine X_ X0 %xdefine X0 X1 %xdefine X1 X2 %xdefine X2 X3 %xdefine X3 X_ %endm ; ROTATE_ARGS ; Rotate values of symbols a...h %macro ROTATE_ARGS 0 %xdefine TMP_ h %xdefine h g %xdefine g f %xdefine f e %xdefine e d %xdefine d c %xdefine c b %xdefine b a %xdefine a TMP_ %endm %macro FOUR_ROUNDS_AND_SCHED 0 ;; compute s0 four at a time and s1 two at a time ;; compute W[-16] + W[-7] 4 at a time ;vmovdqa XTMP0, X3 mov y0, e ; y0 = e MY_ROR y0, (25-11) ; y0 = e >> (25-11) mov y1, a ; y1 = a vpalignr XTMP0, X3, X2, 4 ; XTMP0 = W[-7] MY_ROR y1, (22-13) ; y1 = a >> (22-13) xor y0, e ; y0 = e ^ (e >> (25-11)) mov y2, f ; y2 = f MY_ROR y0, (11-6) ; y0 = (e >> (11-6)) ^ (e >> (25-6)) ;vmovdqa XTMP1, X1 xor y1, a ; y1 = a ^ (a >> (22-13) xor y2, g ; y2 = f^g vpaddd XTMP0, XTMP0, X0 ; XTMP0 = W[-7] + W[-16] xor y0, e ; y0 = e ^ (e >> (11-6)) ^ (e >> (25-6)) and y2, e ; y2 = (f^g)&e MY_ROR y1, (13-2) ; y1 = (a >> (13-2)) ^ (a >> (22-2)) ;; compute s0 vpalignr XTMP1, X1, X0, 4 ; XTMP1 = W[-15] xor y1, a ; y1 = a ^ (a >> (13-2)) ^ (a >> (22-2)) MY_ROR y0, 6 ; y0 = S1 = (e>>6) & (e>>11) ^ (e>>25) xor y2, g ; y2 = CH = ((f^g)&e)^g MY_ROR y1, 2 ; y1 = S0 = (a>>2) ^ (a>>13) ^ (a>>22) add y2, y0 ; y2 = S1 + CH add y2, [rsp + _XFER + 0*4] ; y2 = k + w + S1 + CH mov y0, a ; y0 = a add h, y2 ; h = h + S1 + CH + k + w mov y2, a ; y2 = a vpsrld XTMP2, XTMP1, 7 or y0, c ; y0 = a|c add d, h ; d = d + h + S1 + CH + k + w and y2, c ; y2 = a&c vpslld XTMP3, XTMP1, (32-7) and y0, b ; y0 = (a|c)&b add h, y1 ; h = h + S1 + CH + k + w + S0 vpor XTMP3, XTMP3, XTMP2 ; XTMP1 = W[-15] MY_ROR 7 or y0, y2 ; y0 = MAJ = (a|c)&b)|(a&c) add h, y0 ; h = h + S1 + CH + k + w + S0 + MAJ ROTATE_ARGS mov y0, e ; y0 = e mov y1, a ; y1 = a MY_ROR y0, (25-11) ; y0 = e >> (25-11) xor y0, e ; y0 = e ^ (e >> (25-11)) mov y2, f ; y2 = f MY_ROR y1, (22-13) ; y1 = a >> (22-13) vpsrld XTMP2, XTMP1,18 xor y1, a ; y1 = a ^ (a >> (22-13) MY_ROR y0, (11-6) ; y0 = (e >> (11-6)) ^ (e >> (25-6)) xor y2, g ; y2 = f^g vpsrld XTMP4, XTMP1, 3 ; XTMP4 = W[-15] >> 3 MY_ROR y1, (13-2) ; y1 = (a >> (13-2)) ^ (a >> (22-2)) xor y0, e ; y0 = e ^ (e >> (11-6)) ^ (e >> (25-6)) and y2, e ; y2 = (f^g)&e MY_ROR y0, 6 ; y0 = S1 = (e>>6) & (e>>11) ^ (e>>25) vpslld XTMP1, XTMP1, (32-18) xor y1, a ; y1 = a ^ (a >> (13-2)) ^ (a >> (22-2)) xor y2, g ; y2 = CH = ((f^g)&e)^g vpxor XTMP3, XTMP3, XTMP1 add y2, y0 ; y2 = S1 + CH add y2, [rsp + _XFER + 1*4] ; y2 = k + w + S1 + CH MY_ROR y1, 2 ; y1 = S0 = (a>>2) ^ (a>>13) ^ (a>>22) vpxor XTMP3, XTMP3, XTMP2 ; XTMP1 = W[-15] MY_ROR 7 ^ W[-15] MY_ROR 18 mov y0, a ; y0 = a add h, y2 ; h = h + S1 + CH + k + w mov y2, a ; y2 = a vpxor XTMP1, XTMP3, XTMP4 ; XTMP1 = s0 or y0, c ; y0 = a|c add d, h ; d = d + h + S1 + CH + k + w and y2, c ; y2 = a&c ;; compute low s1 vpshufd XTMP2, X3, 11111010b ; XTMP2 = W[-2] {BBAA} and y0, b ; y0 = (a|c)&b add h, y1 ; h = h + S1 + CH + k + w + S0 vpaddd XTMP0, XTMP0, XTMP1 ; XTMP0 = W[-16] + W[-7] + s0 or y0, y2 ; y0 = MAJ = (a|c)&b)|(a&c) add h, y0 ; h = h + S1 + CH + k + w + S0 + MAJ ROTATE_ARGS ;vmovdqa XTMP3, XTMP2 ; XTMP3 = W[-2] {BBAA} mov y0, e ; y0 = e mov y1, a ; y1 = a MY_ROR y0, (25-11) ; y0 = e >> (25-11) ;vmovdqa XTMP4, XTMP2 ; XTMP4 = W[-2] {BBAA} xor y0, e ; y0 = e ^ (e >> (25-11)) MY_ROR y1, (22-13) ; y1 = a >> (22-13) mov y2, f ; y2 = f xor y1, a ; y1 = a ^ (a >> (22-13) MY_ROR y0, (11-6) ; y0 = (e >> (11-6)) ^ (e >> (25-6)) vpsrld XTMP4, XTMP2, 10 ; XTMP4 = W[-2] >> 10 {BBAA} xor y2, g ; y2 = f^g vpsrlq XTMP3, XTMP2, 19 ; XTMP3 = W[-2] MY_ROR 19 {xBxA} xor y0, e ; y0 = e ^ (e >> (11-6)) ^ (e >> (25-6)) and y2, e ; y2 = (f^g)&e vpsrlq XTMP2, XTMP2, 17 ; XTMP2 = W[-2] MY_ROR 17 {xBxA} MY_ROR y1, (13-2) ; y1 = (a >> (13-2)) ^ (a >> (22-2)) xor y1, a ; y1 = a ^ (a >> (13-2)) ^ (a >> (22-2)) xor y2, g ; y2 = CH = ((f^g)&e)^g MY_ROR y0, 6 ; y0 = S1 = (e>>6) & (e>>11) ^ (e>>25) vpxor XTMP2, XTMP2, XTMP3 add y2, y0 ; y2 = S1 + CH MY_ROR y1, 2 ; y1 = S0 = (a>>2) ^ (a>>13) ^ (a>>22) add y2, [rsp + _XFER + 2*4] ; y2 = k + w + S1 + CH vpxor XTMP4, XTMP4, XTMP2 ; XTMP4 = s1 {xBxA} mov y0, a ; y0 = a add h, y2 ; h = h + S1 + CH + k + w mov y2, a ; y2 = a vpshufb XTMP4, XTMP4, SHUF_00BA ; XTMP4 = s1 {00BA} or y0, c ; y0 = a|c add d, h ; d = d + h + S1 + CH + k + w and y2, c ; y2 = a&c vpaddd XTMP0, XTMP0, XTMP4 ; XTMP0 = {..., ..., W[1], W[0]} and y0, b ; y0 = (a|c)&b add h, y1 ; h = h + S1 + CH + k + w + S0 ;; compute high s1 vpshufd XTMP2, XTMP0, 01010000b ; XTMP2 = W[-2] {DDCC} or y0, y2 ; y0 = MAJ = (a|c)&b)|(a&c) add h, y0 ; h = h + S1 + CH + k + w + S0 + MAJ ROTATE_ARGS ;vmovdqa XTMP3, XTMP2 ; XTMP3 = W[-2] {DDCC} mov y0, e ; y0 = e MY_ROR y0, (25-11) ; y0 = e >> (25-11) mov y1, a ; y1 = a ;vmovdqa XTMP5, XTMP2 ; XTMP5 = W[-2] {DDCC} MY_ROR y1, (22-13) ; y1 = a >> (22-13) xor y0, e ; y0 = e ^ (e >> (25-11)) mov y2, f ; y2 = f MY_ROR y0, (11-6) ; y0 = (e >> (11-6)) ^ (e >> (25-6)) vpsrld XTMP5, XTMP2, 10 ; XTMP5 = W[-2] >> 10 {DDCC} xor y1, a ; y1 = a ^ (a >> (22-13) xor y2, g ; y2 = f^g vpsrlq XTMP3, XTMP2, 19 ; XTMP3 = W[-2] MY_ROR 19 {xDxC} xor y0, e ; y0 = e ^ (e >> (11-6)) ^ (e >> (25-6)) and y2, e ; y2 = (f^g)&e MY_ROR y1, (13-2) ; y1 = (a >> (13-2)) ^ (a >> (22-2)) vpsrlq XTMP2, XTMP2, 17 ; XTMP2 = W[-2] MY_ROR 17 {xDxC} xor y1, a ; y1 = a ^ (a >> (13-2)) ^ (a >> (22-2)) MY_ROR y0, 6 ; y0 = S1 = (e>>6) & (e>>11) ^ (e>>25) xor y2, g ; y2 = CH = ((f^g)&e)^g vpxor XTMP2, XTMP2, XTMP3 MY_ROR y1, 2 ; y1 = S0 = (a>>2) ^ (a>>13) ^ (a>>22) add y2, y0 ; y2 = S1 + CH add y2, [rsp + _XFER + 3*4] ; y2 = k + w + S1 + CH vpxor XTMP5, XTMP5, XTMP2 ; XTMP5 = s1 {xDxC} mov y0, a ; y0 = a add h, y2 ; h = h + S1 + CH + k + w mov y2, a ; y2 = a vpshufb XTMP5, XTMP5, SHUF_DC00 ; XTMP5 = s1 {DC00} or y0, c ; y0 = a|c add d, h ; d = d + h + S1 + CH + k + w and y2, c ; y2 = a&c vpaddd X0, XTMP5, XTMP0 ; X0 = {W[3], W[2], W[1], W[0]} and y0, b ; y0 = (a|c)&b add h, y1 ; h = h + S1 + CH + k + w + S0 or y0, y2 ; y0 = MAJ = (a|c)&b)|(a&c) add h, y0 ; h = h + S1 + CH + k + w + S0 + MAJ ROTATE_ARGS rotate_Xs %endm ;; input is [rsp + _XFER + %1 * 4] %macro DO_ROUND 1 mov y0, e ; y0 = e MY_ROR y0, (25-11) ; y0 = e >> (25-11) mov y1, a ; y1 = a xor y0, e ; y0 = e ^ (e >> (25-11)) MY_ROR y1, (22-13) ; y1 = a >> (22-13) mov y2, f ; y2 = f xor y1, a ; y1 = a ^ (a >> (22-13) MY_ROR y0, (11-6) ; y0 = (e >> (11-6)) ^ (e >> (25-6)) xor y2, g ; y2 = f^g xor y0, e ; y0 = e ^ (e >> (11-6)) ^ (e >> (25-6)) MY_ROR y1, (13-2) ; y1 = (a >> (13-2)) ^ (a >> (22-2)) and y2, e ; y2 = (f^g)&e xor y1, a ; y1 = a ^ (a >> (13-2)) ^ (a >> (22-2)) MY_ROR y0, 6 ; y0 = S1 = (e>>6) & (e>>11) ^ (e>>25) xor y2, g ; y2 = CH = ((f^g)&e)^g add y2, y0 ; y2 = S1 + CH MY_ROR y1, 2 ; y1 = S0 = (a>>2) ^ (a>>13) ^ (a>>22) add y2, [rsp + _XFER + %1 * 4] ; y2 = k + w + S1 + CH mov y0, a ; y0 = a add h, y2 ; h = h + S1 + CH + k + w mov y2, a ; y2 = a or y0, c ; y0 = a|c add d, h ; d = d + h + S1 + CH + k + w and y2, c ; y2 = a&c and y0, b ; y0 = (a|c)&b add h, y1 ; h = h + S1 + CH + k + w + S0 or y0, y2 ; y0 = MAJ = (a|c)&b)|(a&c) add h, y0 ; h = h + S1 + CH + k + w + S0 + MAJ ROTATE_ARGS %endm ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; void sha256_avx(void *input_data, UINT32 digest[8], UINT64 num_blks) ;; arg 1 : pointer to input data ;; arg 2 : pointer to digest ;; arg 3 : Num blocks section .text global sha256_avx align 32 sha256_avx: push rbx %ifdef WINABI push rsi push rdi %endif push rbp push r13 push r14 push r15 sub rsp,STACK_SIZE %ifdef WINABI vmovdqa [rsp + _XMM_SAVE + 0*16],xmm6 vmovdqa [rsp + _XMM_SAVE + 1*16],xmm7 vmovdqa [rsp + _XMM_SAVE + 2*16],xmm8 vmovdqa [rsp + _XMM_SAVE + 3*16],xmm9 vmovdqa [rsp + _XMM_SAVE + 4*16],xmm10 vmovdqa [rsp + _XMM_SAVE + 5*16],xmm11 vmovdqa [rsp + _XMM_SAVE + 6*16],xmm12 vmovdqa [rsp + _XMM_SAVE + 7*16],xmm13 %endif shl NUM_BLKS, 6 ; convert to bytes jz done_hash add NUM_BLKS, INP ; pointer to end of data mov [rsp + _INP_END], NUM_BLKS ;; load initial digest mov a,[4*0 + CTX] mov b,[4*1 + CTX] mov c,[4*2 + CTX] mov d,[4*3 + CTX] mov e,[4*4 + CTX] mov f,[4*5 + CTX] mov g,[4*6 + CTX] mov h,[4*7 + CTX] vmovdqa BYTE_FLIP_MASK, [PSHUFFLE_BYTE_FLIP_MASK wrt rip] vmovdqa SHUF_00BA, [_SHUF_00BA wrt rip] vmovdqa SHUF_DC00, [_SHUF_DC00 wrt rip] loop0: lea TBL,[K256 wrt rip] ;; byte swap first 16 dwords COPY_XMM_AND_BSWAP X0, [INP + 0*16], BYTE_FLIP_MASK COPY_XMM_AND_BSWAP X1, [INP + 1*16], BYTE_FLIP_MASK COPY_XMM_AND_BSWAP X2, [INP + 2*16], BYTE_FLIP_MASK COPY_XMM_AND_BSWAP X3, [INP + 3*16], BYTE_FLIP_MASK mov [rsp + _INP], INP ;; schedule 48 input dwords, by doing 3 rounds of 16 each mov SRND, 3 align 16 loop1: vpaddd XFER, X0, [TBL + 0*16] vmovdqa [rsp + _XFER], XFER FOUR_ROUNDS_AND_SCHED vpaddd XFER, X0, [TBL + 1*16] vmovdqa [rsp + _XFER], XFER FOUR_ROUNDS_AND_SCHED vpaddd XFER, X0, [TBL + 2*16] vmovdqa [rsp + _XFER], XFER FOUR_ROUNDS_AND_SCHED vpaddd XFER, X0, [TBL + 3*16] vmovdqa [rsp + _XFER], XFER add TBL, 4*16 FOUR_ROUNDS_AND_SCHED sub SRND, 1 jne loop1 mov SRND, 2 loop2: vpaddd XFER, X0, [TBL + 0*16] vmovdqa [rsp + _XFER], XFER DO_ROUND 0 DO_ROUND 1 DO_ROUND 2 DO_ROUND 3 vpaddd XFER, X1, [TBL + 1*16] vmovdqa [rsp + _XFER], XFER add TBL, 2*16 DO_ROUND 0 DO_ROUND 1 DO_ROUND 2 DO_ROUND 3 vmovdqa X0, X2 vmovdqa X1, X3 sub SRND, 1 jne loop2 addm [4*0 + CTX],a addm [4*1 + CTX],b addm [4*2 + CTX],c addm [4*3 + CTX],d addm [4*4 + CTX],e addm [4*5 + CTX],f addm [4*6 + CTX],g addm [4*7 + CTX],h mov INP, [rsp + _INP] add INP, 64 cmp INP, [rsp + _INP_END] jne loop0 done_hash: %ifdef WINABI vmovdqa xmm6,[rsp + _XMM_SAVE + 0*16] vmovdqa xmm7,[rsp + _XMM_SAVE + 1*16] vmovdqa xmm8,[rsp + _XMM_SAVE + 2*16] vmovdqa xmm9,[rsp + _XMM_SAVE + 3*16] vmovdqa xmm10,[rsp + _XMM_SAVE + 4*16] vmovdqa xmm11,[rsp + _XMM_SAVE + 5*16] vmovdqa xmm12,[rsp + _XMM_SAVE + 6*16] vmovdqa xmm13,[rsp + _XMM_SAVE + 7*16] %endif add rsp, STACK_SIZE pop r15 pop r14 pop r13 pop rbp %ifdef WINABI pop rdi pop rsi %endif pop rbx ret section .data align 64 K256: dd 0x428a2f98,0x71374491,0xb5c0fbcf,0xe9b5dba5 dd 0x3956c25b,0x59f111f1,0x923f82a4,0xab1c5ed5 dd 0xd807aa98,0x12835b01,0x243185be,0x550c7dc3 dd 0x72be5d74,0x80deb1fe,0x9bdc06a7,0xc19bf174 dd 0xe49b69c1,0xefbe4786,0x0fc19dc6,0x240ca1cc dd 0x2de92c6f,0x4a7484aa,0x5cb0a9dc,0x76f988da dd 0x983e5152,0xa831c66d,0xb00327c8,0xbf597fc7 dd 0xc6e00bf3,0xd5a79147,0x06ca6351,0x14292967 dd 0x27b70a85,0x2e1b2138,0x4d2c6dfc,0x53380d13 dd 0x650a7354,0x766a0abb,0x81c2c92e,0x92722c85 dd 0xa2bfe8a1,0xa81a664b,0xc24b8b70,0xc76c51a3 dd 0xd192e819,0xd6990624,0xf40e3585,0x106aa070 dd 0x19a4c116,0x1e376c08,0x2748774c,0x34b0bcb5 dd 0x391c0cb3,0x4ed8aa4a,0x5b9cca4f,0x682e6ff3 dd 0x748f82ee,0x78a5636f,0x84c87814,0x8cc70208 dd 0x90befffa,0xa4506ceb,0xbef9a3f7,0xc67178f2 PSHUFFLE_BYTE_FLIP_MASK: ddq 0x0c0d0e0f08090a0b0405060700010203 ; shuffle xBxA -> 00BA _SHUF_00BA: ddq 0xFFFFFFFFFFFFFFFF0b0a090803020100 ; shuffle xDxC -> DC00 _SHUF_DC00: ddq 0x0b0a090803020100FFFFFFFFFFFFFFFF %ifidn __OUTPUT_FORMAT__,elf section .note.GNU-stack noalloc noexec nowrite progbits %endif %ifidn __OUTPUT_FORMAT__,elf32 section .note.GNU-stack noalloc noexec nowrite progbits %endif %ifidn __OUTPUT_FORMAT__,elf64 section .note.GNU-stack noalloc noexec nowrite progbits %endif