/* This code is written by kerukuro for cppcrypto library (http://cppcrypto.sourceforge.net/) and released into public domain. */ /* Modified for VeraCrypt with speed optimization for C implementation */ #include "Sha2.h" #include "Common/Endian.h" #include "Crypto/cpu.h" #include "Crypto/misc.h" #if defined(_UEFI) || defined(CRYPTOPP_DISABLE_ASM) #define NO_OPTIMIZED_VERSIONS #endif #ifndef NO_OPTIMIZED_VERSIONS #if defined(__cplusplus) extern "C" { #endif #if CRYPTOPP_BOOL_X64 void sha512_rorx(const void* M, void* D, uint_64t l); void sha512_sse4(const void* M, uint_64t D[8], uint_64t l); void sha512_avx(const void* M, void* D, uint_64t l); #endif #if CRYPTOPP_BOOL_X64 || ((CRYPTOPP_BOOL_X86 || CRYPTOPP_BOOL_X32) && !defined (TC_MACOSX)) void sha512_compress_nayuki(uint_64t state[8], const uint_8t block[128]); #endif #if defined(__cplusplus) } #endif #endif typedef void (*transformFn)(sha512_ctx* ctx, void* m, uint_64t num_blks); transformFn transfunc = NULL; static const uint_64t K[80] = { LL(0x428a2f98d728ae22), LL(0x7137449123ef65cd), LL(0xb5c0fbcfec4d3b2f), LL(0xe9b5dba58189dbbc), LL(0x3956c25bf348b538), LL(0x59f111f1b605d019), LL(0x923f82a4af194f9b), LL(0xab1c5ed5da6d8118), LL(0xd807aa98a3030242), LL(0x12835b0145706fbe), LL(0x243185be4ee4b28c), LL(0x550c7dc3d5ffb4e2), LL(0x72be5d74f27b896f), LL(0x80deb1fe3b1696b1), LL(0x9bdc06a725c71235), LL(0xc19bf174cf692694), LL(0xe49b69c19ef14ad2), LL(0xefbe4786384f25e3), LL(0x0fc19dc68b8cd5b5), LL(0x240ca1cc77ac9c65), LL(0x2de92c6f592b0275), LL(0x4a7484aa6ea6e483), LL(0x5cb0a9dcbd41fbd4), LL(0x76f988da831153b5), LL(0x983e5152ee66dfab), LL(0xa831c66d2db43210), LL(0xb00327c898fb213f), LL(0xbf597fc7beef0ee4), LL(0xc6e00bf33da88fc2), LL(0xd5a79147930aa725), LL(0x06ca6351e003826f), LL(0x142929670a0e6e70), LL(0x27b70a8546d22ffc), LL(0x2e1b21385c26c926), LL(0x4d2c6dfc5ac42aed), LL(0x53380d139d95b3df), LL(0x650a73548baf63de), LL(0x766a0abb3c77b2a8), LL(0x81c2c92e47edaee6), LL(0x92722c851482353b), LL(0xa2bfe8a14cf10364), LL(0xa81a664bbc423001), LL(0xc24b8b70d0f89791), LL(0xc76c51a30654be30), LL(0xd192e819d6ef5218), LL(0xd69906245565a910), LL(0xf40e35855771202a), LL(0x106aa07032bbd1b8), LL(0x19a4c116b8d2d0c8), LL(0x1e376c085141ab53), LL(0x2748774cdf8eeb99), LL(0x34b0bcb5e19b48a8), LL(0x391c0cb3c5c95a63), LL(0x4ed8aa4ae3418acb), LL(0x5b9cca4f7763e373), LL(0x682e6ff3d6b2b8a3), LL(0x748f82ee5defb2fc), LL(0x78a5636f43172f60), LL(0x84c87814a1f0ab72), LL(0x8cc702081a6439ec), LL(0x90befffa23631e28), LL(0xa4506cebde82bde9), LL(0xbef9a3f7b2c67915), LL(0xc67178f2e372532b), LL(0xca273eceea26619c), LL(0xd186b8c721c0c207), LL(0xeada7dd6cde0eb1e), LL(0xf57d4f7fee6ed178), LL(0x06f067aa72176fba), LL(0x0a637dc5a2c898a6), LL(0x113f9804bef90dae), LL(0x1b710b35131c471b), LL(0x28db77f523047d84), LL(0x32caab7b40c72493), LL(0x3c9ebe0a15c9bebc), LL(0x431d67c49c100d4c), LL(0x4cc5d4becb3e42b6), LL(0x597f299cfc657e2a), LL(0x5fcb6fab3ad6faec), LL(0x6c44198c4a475817) }; #define Ch(x,y,z) ((z) ^ ((x) & ((y) ^ (z)))) #define Maj(x,y,z) (((x) & (y)) | ((z) & ((x) ^ (y)))) #define sum0(x) (rotr64((x), 28) ^ rotr64((x), 34) ^ rotr64((x), 39)) #define sum1(x) (rotr64((x), 14) ^ rotr64((x), 18) ^ rotr64((x), 41)) #define sigma0(x) (rotr64((x), 1) ^ rotr64((x), 8) ^ ((x) >> 7)) #define sigma1(x) (rotr64((x), 19) ^ rotr64((x), 61) ^ ((x) >> 6)) #define WU(j) (W[j & 15] += sigma1(W[(j + 14) & 15]) + W[(j + 9) & 15] + sigma0(W[(j + 1) & 15])) #define COMPRESS_ROUND(i, j, K) \ T1 = h + sum1(e) + Ch(e, f, g) + K[i + j] + (i? WU(j): W[j]); \ T2 = sum0(a) + Maj(a, b, c); \ h = g; \ g = f; \ f = e; \ e = d + T1; \ d = c; \ c = b; \ b = a; \ a = T1 + T2; void StdTransform(sha512_ctx* ctx, void* mp, uint_64t num_blks) { uint_64t blk; for (blk = 0; blk < num_blks; blk++) { uint_64t W[16]; uint_64t a,b,c,d,e,f,g,h; uint_64t T1, T2; int i; #if defined (TC_WINDOWS_DRIVER) && defined (DEBUG) int j; #endif for (i = 0; i < 128 / 8; i++) { W[i] = bswap_64((((const uint_64t*)(mp))[blk * 16 + i])); } a = ctx->hash[0]; b = ctx->hash[1]; c = ctx->hash[2]; d = ctx->hash[3]; e = ctx->hash[4]; f = ctx->hash[5]; g = ctx->hash[6]; h = ctx->hash[7]; for (i = 0; i <= 79; i+=16) { #if defined (TC_WINDOWS_DRIVER) && defined (DEBUG) for (j = 0; j < 16; j++) { COMPRESS_ROUND(i, j, K); } #else COMPRESS_ROUND(i, 0, K); COMPRESS_ROUND(i, 1, K); COMPRESS_ROUND(i , 2, K); COMPRESS_ROUND(i, 3, K); COMPRESS_ROUND(i, 4, K); COMPRESS_ROUND(i, 5, K); COMPRESS_ROUND(i, 6, K); COMPRESS_ROUND(i, 7, K); COMPRESS_ROUND(i, 8, K); COMPRESS_ROUND(i, 9, K); COMPRESS_ROUND(i, 10, K); COMPRESS_ROUND(i, 11, K); COMPRESS_ROUND(i, 12, K); COMPRESS_ROUND(i, 13, K); COMPRESS_ROUND(i, 14, K); COMPRESS_ROUND(i, 15, K); #endif } ctx->hash[0] += a; ctx->hash[1] += b; ctx->hash[2] += c; ctx->hash[3] += d; ctx->hash[4] += e; ctx->hash[5] += f; ctx->hash[6] += g; ctx->hash[7] += h; } } #ifndef NO_OPTIMIZED_VERSIONS #if CRYPTOPP_BOOL_X64 void Avx2Transform(sha512_ctx* ctx, void* mp, uint_64t num_blks) { if (num_blks > 1) sha512_rorx(mp, ctx->hash, num_blks); else sha512_sse4(mp, ctx->hash, num_blks); } void AvxTransform(sha512_ctx* ctx, void* mp, uint_64t num_blks) { if (num_blks > 1) sha512_avx(mp, ctx->hash, num_blks); else sha512_sse4(mp, ctx->hash, num_blks); } void SSE4Transform(sha512_ctx* ctx, void* mp, uint_64t num_blks) { sha512_sse4(mp, ctx->hash, num_blks); } #endif #if CRYPTOPP_BOOL_X64 || ((CRYPTOPP_BOOL_X86 || CRYPTOPP_BOOL_X32) && !defined (TC_MACOSX)) void SSE2Transform(sha512_ctx* ctx, void* mp, uint_64t num_blks) { uint_64t i; for (i = 0; i < num_blks; i++) sha512_compress_nayuki(ctx->hash, (uint_8t*)mp + i * 128); } #endif #endif // NO_OPTIMIZED_VERSIONS void sha512_begin(sha512_ctx* ctx) { ctx->hash[0] = LL(0x6a09e667f3bcc908); ctx->hash[1] = LL(0xbb67ae8584caa73b); ctx->hash[2] = LL(0x3c6ef372fe94f82b); ctx->hash[3] = LL(0xa54ff53a5f1d36f1); ctx->hash[4] = LL(0x510e527fade682d1); ctx->hash[5] = LL(0x9b05688c2b3e6c1f); ctx->hash[6] = LL(0x1f83d9abfb41bd6b); ctx->hash[7] = LL(0x5be0cd19137e2179); ctx->count[0] = 0; ctx->count[1] = 0; if (!transfunc) { #ifndef NO_OPTIMIZED_VERSIONS #if CRYPTOPP_BOOL_X64 if (g_isIntel&& HasSAVX2() && HasSBMI2()) transfunc = Avx2Transform; else if (g_isIntel && HasSAVX()) { transfunc = AvxTransform; } else if (HasSSE41()) { transfunc = SSE4Transform; } else #endif #if CRYPTOPP_BOOL_X64 || ((CRYPTOPP_BOOL_X86 || CRYPTOPP_BOOL_X32) && !defined (TC_MACOSX)) #if CRYPTOPP_BOOL_X64 if (HasSSE2()) #else if (HasSSSE3() && HasMMX()) #endif transfunc = SSE2Transform; else #endif #endif transfunc = StdTransform; } } void sha512_end(unsigned char * result, sha512_ctx* ctx) { int i; uint_64t mlen, pos = ctx->count[0]; uint_8t* m = (uint_8t*) ctx->wbuf; m[pos++] = 0x80; if (pos > 112) { memset(m + pos, 0, (size_t) (128 - pos)); transfunc(ctx, m, 1); pos = 0; } memset(m + pos, 0, (size_t) (128 - pos)); mlen = bswap_64(ctx->count[1]); memcpy(m + (128 - 8), &mlen, 64 / 8); transfunc(ctx, m, 1); for (i = 0; i < 8; i++) { ctx->hash[i] = bswap_64(ctx->hash[i]); } memcpy(result, ctx->hash, 64); } void sha512_hash(const unsigned char * data, uint_64t len, sha512_ctx *ctx) { uint_64t pos = ctx->count[0]; uint_64t total = ctx->count[1]; uint_8t* m = (uint_8t*) ctx->wbuf; if (pos && pos + len >= 128) { memcpy(m + pos, data, (size_t) (128 - pos)); transfunc(ctx, m, 1); len -= 128 - pos; total += (128 - pos) * 8; data += 128 - pos; pos = 0; } if (len >= 128) { uint_64t blocks = len / 128; uint_64t bytes = blocks * 128; transfunc(ctx, (void*)data, blocks); len -= bytes; total += (bytes)* 8; data += bytes; } memcpy(m+pos, data, (size_t) (len)); pos += len; total += len * 8; ctx->count[0] = pos; ctx->count[1] = total; } void sha512(unsigned char * result, const unsigned char* source, uint_64t sourceLen) { sha512_ctx ctx; sha512_begin(&ctx); sha512_hash(source, sourceLen, &ctx); sha512_end(result, &ctx); } ///////////////////////////// #ifndef NO_OPTIMIZED_VERSIONS #if defined(__cplusplus) extern "C" { #endif #if CRYPTOPP_BOOL_X64 void sha256_sse4(void *input_data, uint_32t digest[8], uint_64t num_blks); void sha256_rorx(void *input_data, uint_32t digest[8], uint_64t num_blks); void sha256_avx(void *input_data, uint_32t digest[8], uint_64t num_blks); #endif #if CRYPTOPP_BOOL_X86 || CRYPTOPP_BOOL_X32 void sha256_compress_nayuki(uint_32t state[8], const uint_8t block[64]); #endif #if defined(__cplusplus) } #endif #endif CRYPTOPP_ALIGN_DATA(16) static const uint_32t SHA256_K[64] CRYPTOPP_SECTION_ALIGN16 = { 0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, 0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5, 0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3, 0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174, 0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc, 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da, 0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7, 0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967, 0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13, 0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85, 0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3, 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070, 0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5, 0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3, 0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208, 0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2 }; #if (defined(CRYPTOPP_X86_ASM_AVAILABLE) || defined(CRYPTOPP_X32_ASM_AVAILABLE)) #ifdef _MSC_VER # pragma warning(disable: 4100 4731) #endif static void CRYPTOPP_FASTCALL X86_SHA256_HashBlocks(uint_32t *state, const uint_32t *data, size_t len) { #define LOCALS_SIZE 8*4 + 16*4 + 4*WORD_SZ #define H(i) [BASE+ASM_MOD(1024+7-(i),8)*4] #define G(i) H(i+1) #define F(i) H(i+2) #define E(i) H(i+3) #define D(i) H(i+4) #define C(i) H(i+5) #define B(i) H(i+6) #define A(i) H(i+7) #define Wt(i) BASE+8*4+ASM_MOD(1024+15-(i),16)*4 #define Wt_2(i) Wt((i)-2) #define Wt_15(i) Wt((i)-15) #define Wt_7(i) Wt((i)-7) #define K_END [BASE+8*4+16*4+0*WORD_SZ] #define STATE_SAVE [BASE+8*4+16*4+1*WORD_SZ] #define DATA_SAVE [BASE+8*4+16*4+2*WORD_SZ] #define DATA_END [BASE+8*4+16*4+3*WORD_SZ] #define Kt(i) WORD_REG(si)+(i)*4 #if CRYPTOPP_BOOL_X32 #define BASE esp+8 #elif CRYPTOPP_BOOL_X86 #define BASE esp+4 #elif defined(__GNUC__) #define BASE r8 #else #define BASE rsp #endif #define RA0(i, edx, edi) \ AS2( add edx, [Kt(i)] )\ AS2( add edx, [Wt(i)] )\ AS2( add edx, H(i) )\ #define RA1(i, edx, edi) #define RB0(i, edx, edi) #define RB1(i, edx, edi) \ AS2( mov AS_REG_7d, [Wt_2(i)] )\ AS2( mov edi, [Wt_15(i)])\ AS2( mov ebx, AS_REG_7d )\ AS2( shr AS_REG_7d, 10 )\ AS2( ror ebx, 17 )\ AS2( xor AS_REG_7d, ebx )\ AS2( ror ebx, 2 )\ AS2( xor ebx, AS_REG_7d )/* s1(W_t-2) */\ AS2( add ebx, [Wt_7(i)])\ AS2( mov AS_REG_7d, edi )\ AS2( shr AS_REG_7d, 3 )\ AS2( ror edi, 7 )\ AS2( add ebx, [Wt(i)])/* s1(W_t-2) + W_t-7 + W_t-16 */\ AS2( xor AS_REG_7d, edi )\ AS2( add edx, [Kt(i)])\ AS2( ror edi, 11 )\ AS2( add edx, H(i) )\ AS2( xor AS_REG_7d, edi )/* s0(W_t-15) */\ AS2( add AS_REG_7d, ebx )/* W_t = s1(W_t-2) + W_t-7 + s0(W_t-15) W_t-16*/\ AS2( mov [Wt(i)], AS_REG_7d)\ AS2( add edx, AS_REG_7d )\ #define ROUND(i, r, eax, ecx, edi, edx)\ /* in: edi = E */\ /* unused: eax, ecx, temp: ebx, AS_REG_7d, out: edx = T1 */\ AS2( mov edx, F(i) )\ AS2( xor edx, G(i) )\ AS2( and edx, edi )\ AS2( xor edx, G(i) )/* Ch(E,F,G) = (G^(E&(F^G))) */\ AS2( mov AS_REG_7d, edi )\ AS2( ror edi, 6 )\ AS2( ror AS_REG_7d, 25 )\ RA##r(i, edx, edi )/* H + Wt + Kt + Ch(E,F,G) */\ AS2( xor AS_REG_7d, edi )\ AS2( ror edi, 5 )\ AS2( xor AS_REG_7d, edi )/* S1(E) */\ AS2( add edx, AS_REG_7d )/* T1 = S1(E) + Ch(E,F,G) + H + Wt + Kt */\ RB##r(i, edx, edi )/* H + Wt + Kt + Ch(E,F,G) */\ /* in: ecx = A, eax = B^C, edx = T1 */\ /* unused: edx, temp: ebx, AS_REG_7d, out: eax = A, ecx = B^C, edx = E */\ AS2( mov ebx, ecx )\ AS2( xor ecx, B(i) )/* A^B */\ AS2( and eax, ecx )\ AS2( xor eax, B(i) )/* Maj(A,B,C) = B^((A^B)&(B^C) */\ AS2( mov AS_REG_7d, ebx )\ AS2( ror ebx, 2 )\ AS2( add eax, edx )/* T1 + Maj(A,B,C) */\ AS2( add edx, D(i) )\ AS2( mov D(i), edx )\ AS2( ror AS_REG_7d, 22 )\ AS2( xor AS_REG_7d, ebx )\ AS2( ror ebx, 11 )\ AS2( xor AS_REG_7d, ebx )\ AS2( add eax, AS_REG_7d )/* T1 + S0(A) + Maj(A,B,C) */\ AS2( mov H(i), eax )\ // Unroll the use of CRYPTOPP_BOOL_X64 in assembler math. The GAS assembler on X32 (version 2.25) // complains "Error: invalid operands (*ABS* and *UND* sections) for `*` and `-`" #if CRYPTOPP_BOOL_X64 #define SWAP_COPY(i) \ AS2( mov WORD_REG(bx), [WORD_REG(dx)+i*WORD_SZ])\ AS1( bswap WORD_REG(bx))\ AS2( mov [Wt(i*2+1)], WORD_REG(bx)) #else // X86 and X32 #define SWAP_COPY(i) \ AS2( mov WORD_REG(bx), [WORD_REG(dx)+i*WORD_SZ])\ AS1( bswap WORD_REG(bx))\ AS2( mov [Wt(i)], WORD_REG(bx)) #endif #if defined(__GNUC__) #if CRYPTOPP_BOOL_X64 CRYPTOPP_ALIGN_DATA(16) byte workspace[LOCALS_SIZE] ; #endif __asm__ __volatile__ ( #if CRYPTOPP_BOOL_X64 "lea %4, %%r8;" #endif INTEL_NOPREFIX #endif #if CRYPTOPP_BOOL_X86 || CRYPTOPP_BOOL_X32 #ifndef __GNUC__ AS2( mov edi, [len]) AS2( lea WORD_REG(si), [SHA256_K+48*4]) #endif #if !defined(_MSC_VER) || (_MSC_VER < 1400) AS_PUSH_IF86(bx) #endif AS_PUSH_IF86(bp) AS2( mov ebx, esp) AS2( and esp, -16) AS2( sub WORD_REG(sp), LOCALS_SIZE) AS_PUSH_IF86(bx) #endif AS2( mov STATE_SAVE, WORD_REG(cx)) AS2( mov DATA_SAVE, WORD_REG(dx)) AS2( lea WORD_REG(ax), [WORD_REG(di) + WORD_REG(dx)]) AS2( mov DATA_END, WORD_REG(ax)) AS2( mov K_END, WORD_REG(si)) #if CRYPTOPP_BOOL_SSE2_ASM_AVAILABLE #if CRYPTOPP_BOOL_X86 || CRYPTOPP_BOOL_X32 AS2( test edi, 1) ASJ( jnz, 2, f) AS1( dec DWORD PTR K_END) #endif AS2( movdqu xmm0, XMMWORD_PTR [WORD_REG(cx)+0*16]) AS2( movdqu xmm1, XMMWORD_PTR [WORD_REG(cx)+1*16]) #endif #if CRYPTOPP_BOOL_X86 || CRYPTOPP_BOOL_X32 #if CRYPTOPP_BOOL_SSE2_ASM_AVAILABLE ASJ( jmp, 0, f) #endif ASL(2) // non-SSE2 AS2( mov esi, ecx) AS2( lea edi, A(0)) AS2( mov ecx, 8) ATT_NOPREFIX AS1( rep movsd) INTEL_NOPREFIX AS2( mov esi, K_END) ASJ( jmp, 3, f) #endif #if CRYPTOPP_BOOL_SSE2_ASM_AVAILABLE ASL(0) AS2( movdqu E(0), xmm1) AS2( movdqu A(0), xmm0) #endif #if CRYPTOPP_BOOL_X86 || CRYPTOPP_BOOL_X32 ASL(3) #endif AS2( sub WORD_REG(si), 48*4) SWAP_COPY(0) SWAP_COPY(1) SWAP_COPY(2) SWAP_COPY(3) SWAP_COPY(4) SWAP_COPY(5) SWAP_COPY(6) SWAP_COPY(7) #if CRYPTOPP_BOOL_X86 || CRYPTOPP_BOOL_X32 SWAP_COPY(8) SWAP_COPY(9) SWAP_COPY(10) SWAP_COPY(11) SWAP_COPY(12) SWAP_COPY(13) SWAP_COPY(14) SWAP_COPY(15) #endif AS2( mov edi, E(0)) // E AS2( mov eax, B(0)) // B AS2( xor eax, C(0)) // B^C AS2( mov ecx, A(0)) // A ROUND(0, 0, eax, ecx, edi, edx) ROUND(1, 0, ecx, eax, edx, edi) ROUND(2, 0, eax, ecx, edi, edx) ROUND(3, 0, ecx, eax, edx, edi) ROUND(4, 0, eax, ecx, edi, edx) ROUND(5, 0, ecx, eax, edx, edi) ROUND(6, 0, eax, ecx, edi, edx) ROUND(7, 0, ecx, eax, edx, edi) ROUND(8, 0, eax, ecx, edi, edx) ROUND(9, 0, ecx, eax, edx, edi) ROUND(10, 0, eax, ecx, edi, edx) ROUND(11, 0, ecx, eax, edx, edi) ROUND(12, 0, eax, ecx, edi, edx) ROUND(13, 0, ecx, eax, edx, edi) ROUND(14, 0, eax, ecx, edi, edx) ROUND(15, 0, ecx, eax, edx, edi) ASL(1) AS2(add WORD_REG(si), 4*16) ROUND(0, 1, eax, ecx, edi, edx) ROUND(1, 1, ecx, eax, edx, edi) ROUND(2, 1, eax, ecx, edi, edx) ROUND(3, 1, ecx, eax, edx, edi) ROUND(4, 1, eax, ecx, edi, edx) ROUND(5, 1, ecx, eax, edx, edi) ROUND(6, 1, eax, ecx, edi, edx) ROUND(7, 1, ecx, eax, edx, edi) ROUND(8, 1, eax, ecx, edi, edx) ROUND(9, 1, ecx, eax, edx, edi) ROUND(10, 1, eax, ecx, edi, edx) ROUND(11, 1, ecx, eax, edx, edi) ROUND(12, 1, eax, ecx, edi, edx) ROUND(13, 1, ecx, eax, edx, edi) ROUND(14, 1, eax, ecx, edi, edx) ROUND(15, 1, ecx, eax, edx, edi) AS2( cmp WORD_REG(si), K_END) ATT_NOPREFIX ASJ( jb, 1, b) INTEL_NOPREFIX AS2( mov WORD_REG(dx), DATA_SAVE) AS2( add WORD_REG(dx), 64) AS2( mov AS_REG_7, STATE_SAVE) AS2( mov DATA_SAVE, WORD_REG(dx)) #if CRYPTOPP_BOOL_SSE2_ASM_AVAILABLE #if CRYPTOPP_BOOL_X86 || CRYPTOPP_BOOL_X32 AS2( test DWORD PTR K_END, 1) ASJ( jz, 4, f) #endif AS2( movdqu xmm1, XMMWORD_PTR [AS_REG_7+1*16]) AS2( movdqu xmm0, XMMWORD_PTR [AS_REG_7+0*16]) AS2( paddd xmm1, E(0)) AS2( paddd xmm0, A(0)) AS2( movdqu [AS_REG_7+1*16], xmm1) AS2( movdqu [AS_REG_7+0*16], xmm0) AS2( cmp WORD_REG(dx), DATA_END) ATT_NOPREFIX ASJ( jb, 0, b) INTEL_NOPREFIX #endif #if CRYPTOPP_BOOL_X86 || CRYPTOPP_BOOL_X32 #if CRYPTOPP_BOOL_SSE2_ASM_AVAILABLE ASJ( jmp, 5, f) ASL(4) // non-SSE2 #endif AS2( add [AS_REG_7+0*4], ecx) // A AS2( add [AS_REG_7+4*4], edi) // E AS2( mov eax, B(0)) AS2( mov ebx, C(0)) AS2( mov ecx, D(0)) AS2( add [AS_REG_7+1*4], eax) AS2( add [AS_REG_7+2*4], ebx) AS2( add [AS_REG_7+3*4], ecx) AS2( mov eax, F(0)) AS2( mov ebx, G(0)) AS2( mov ecx, H(0)) AS2( add [AS_REG_7+5*4], eax) AS2( add [AS_REG_7+6*4], ebx) AS2( add [AS_REG_7+7*4], ecx) AS2( mov ecx, AS_REG_7d) AS2( cmp WORD_REG(dx), DATA_END) ASJ( jb, 2, b) #if CRYPTOPP_BOOL_SSE2_ASM_AVAILABLE ASL(5) #endif #endif AS_POP_IF86(sp) AS_POP_IF86(bp) #if !defined(_MSC_VER) || (_MSC_VER < 1400) AS_POP_IF86(bx) #endif #ifdef __GNUC__ ATT_PREFIX : : "c" (state), "d" (data), "S" (SHA256_K+48), "D" (len) #if CRYPTOPP_BOOL_X64 , "m" (workspace[0]) #endif : "memory", "cc", "%eax" #if CRYPTOPP_BOOL_X64 , "%rbx", "%r8", "%r10" #endif ); #endif } #endif // (defined(CRYPTOPP_X86_ASM_AVAILABLE)) #undef sum0 #undef sum1 #undef sigma0 #undef sigma1 #define sum0(x) (rotr32((x), 2) ^ rotr32((x), 13) ^ rotr32((x), 22)) #define sum1(x) (rotr32((x), 6) ^ rotr32((x), 11) ^ rotr32((x), 25)) #define sigma0(x) (rotr32((x), 7) ^ rotr32((x), 18) ^ ((x) >> 3)) #define sigma1(x) (rotr32((x), 17) ^ rotr32((x), 19) ^ ((x) >> 10)) typedef void (*sha256transformFn)(sha256_ctx* ctx, void* m, uint_64t num_blks); sha256transformFn sha256transfunc = NULL; void StdSha256Transform(sha256_ctx* ctx, void* mp, uint_64t num_blks) { uint_64t blk; for (blk = 0; blk < num_blks; blk++) { uint_32t W[16]; uint_32t a,b,c,d,e,f,g,h; uint_32t T1, T2; int i; #if defined (TC_WINDOWS_DRIVER) && defined (DEBUG) int j; #endif for (i = 0; i < 64 / 4; i++) { W[i] = bswap_32((((const uint_32t*)(mp))[blk * 16 + i])); } a = ctx->hash[0]; b = ctx->hash[1]; c = ctx->hash[2]; d = ctx->hash[3]; e = ctx->hash[4]; f = ctx->hash[5]; g = ctx->hash[6]; h = ctx->hash[7]; for (i = 0; i <= 63; i+=16) { #if defined (TC_WINDOWS_DRIVER) && defined (DEBUG) for (j = 0; j < 16; j++) { COMPRESS_ROUND(i, j, SHA256_K); } #else COMPRESS_ROUND(i, 0, SHA256_K); COMPRESS_ROUND(i, 1, SHA256_K); COMPRESS_ROUND(i , 2, SHA256_K); COMPRESS_ROUND(i, 3, SHA256_K); COMPRESS_ROUND(i, 4, SHA256_K); COMPRESS_ROUND(i, 5, SHA256_K); COMPRESS_ROUND(i, 6, SHA256_K); COMPRESS_ROUND(i, 7, SHA256_K); COMPRESS_ROUND(i, 8, SHA256_K); COMPRESS_ROUND(i, 9, SHA256_K); COMPRESS_ROUND(i, 10, SHA256_K); COMPRESS_ROUND(i, 11, SHA256_K); COMPRESS_ROUND(i, 12, SHA256_K); COMPRESS_ROUND(i, 13, SHA256_K); COMPRESS_ROUND(i, 14, SHA256_K); COMPRESS_ROUND(i, 15, SHA256_K); #endif } ctx->hash[0] += a; ctx->hash[1] += b; ctx->hash[2] += c; ctx->hash[3] += d; ctx->hash[4] += e; ctx->hash[5] += f; ctx->hash[6] += g; ctx->hash[7] += h; } } #ifndef NO_OPTIMIZED_VERSIONS #if CRYPTOPP_BOOL_X64 void Avx2Sha256Transform(sha256_ctx* ctx, void* mp, uint_64t num_blks) { if (num_blks > 1) sha256_rorx(mp, ctx->hash, num_blks); else sha256_sse4(mp, ctx->hash, num_blks); } void AvxSha256Transform(sha256_ctx* ctx, void* mp, uint_64t num_blks) { if (num_blks > 1) sha256_avx(mp, ctx->hash, num_blks); else sha256_sse4(mp, ctx->hash, num_blks); } void SSE4Sha256Transform(sha256_ctx* ctx, void* mp, uint_64t num_blks) { sha256_sse4(mp, ctx->hash, num_blks); } #endif #if (defined(CRYPTOPP_X86_ASM_AVAILABLE) || defined(CRYPTOPP_X32_ASM_AVAILABLE)) void SSE2Sha256Transform(sha256_ctx* ctx, void* mp, uint_64t num_blks) { X86_SHA256_HashBlocks(ctx->hash, (const uint_32t*)mp, (size_t)(num_blks * 64)); } #endif #if CRYPTOPP_BOOL_X86 || CRYPTOPP_BOOL_X32 void Sha256AsmTransform(sha256_ctx* ctx, void* mp, uint_64t num_blks) { uint_64t i; for (i = 0; i < num_blks; i++) sha256_compress_nayuki(ctx->hash, (uint_8t*)mp + i * 64); } #endif #endif void sha256_begin(sha256_ctx* ctx) { ctx->hash[0] = 0x6a09e667; ctx->hash[1] = 0xbb67ae85; ctx->hash[2] = 0x3c6ef372; ctx->hash[3] = 0xa54ff53a; ctx->hash[4] = 0x510e527f; ctx->hash[5] = 0x9b05688c; ctx->hash[6] = 0x1f83d9ab; ctx->hash[7] = 0x5be0cd19; ctx->count[0] = 0; ctx->count[1] = 0; if (!sha256transfunc) { #ifndef NO_OPTIMIZED_VERSIONS #if CRYPTOPP_BOOL_X64 if (g_isIntel && HasSAVX2() && HasSBMI2()) sha256transfunc = Avx2Sha256Transform; else if (g_isIntel && HasSAVX()) sha256transfunc = AvxSha256Transform; else if (HasSSE41()) sha256transfunc = SSE4Sha256Transform; else #endif #if (defined(CRYPTOPP_X86_ASM_AVAILABLE) || defined(CRYPTOPP_X32_ASM_AVAILABLE)) if (HasSSE2 ()) sha256transfunc = SSE2Sha256Transform; else #endif #if CRYPTOPP_BOOL_X86 || CRYPTOPP_BOOL_X32 sha256transfunc = Sha256AsmTransform; #else sha256transfunc = StdSha256Transform; #endif #else sha256transfunc = StdSha256Transform; #endif } } void sha256_end(unsigned char * result, sha256_ctx* ctx) { int i; uint_64t mlen, pos = ctx->count[0]; uint_8t* m = (uint_8t*) ctx->wbuf; m[pos++] = 0x80; if (pos > 56) { memset(m + pos, 0, (size_t) (64 - pos)); sha256transfunc(ctx, m, 1); pos = 0; } memset(m + pos, 0, (size_t) (56 - pos)); mlen = bswap_64((uint_64t) ctx->count[1]); memcpy(m + (64 - 8), &mlen, 64 / 8); sha256transfunc(ctx, m, 1); for (i = 0; i < 8; i++) { ctx->hash[i] = bswap_32(ctx->hash[i]); } memcpy(result, ctx->hash, 32); } void sha256_hash(const unsigned char * data, uint_32t len, sha256_ctx *ctx) { uint_32t pos = ctx->count[0]; uint_32t total = ctx->count[1]; uint_8t* m = (uint_8t*) ctx->wbuf; if (pos && pos + len >= 64) { memcpy(m + pos, data, 64 - pos); sha256transfunc(ctx, m, 1); len -= 64 - pos; total += (64 - pos) * 8; data += 64 - pos; pos = 0; } if (len >= 64) { uint_32t blocks = len / 64; uint_32t bytes = blocks * 64; sha256transfunc(ctx, (void*)data, blocks); len -= bytes; total += (bytes)* 8; data += bytes; } memcpy(m+pos, data, len); pos += len; total += len * 8; ctx->count[0] = pos; ctx->count[1] = total; } void sha256(unsigned char * result, const unsigned char* source, uint_32t sourceLen) { sha256_ctx ctx; sha256_begin(&ctx); sha256_hash(source, sourceLen, &ctx); sha256_end(result, &ctx); }