/* --------------------------------------------------------------------------- Copyright (c) 1998-2007, Brian Gladman, Worcester, UK. All rights reserved. LICENSE TERMS The free distribution and use of this software is allowed (with or without changes) provided that: 1. source code distributions include the above copyright notice, this list of conditions and the following disclaimer; 2. binary distributions include the above copyright notice, this list of conditions and the following disclaimer in their documentation; 3. the name of the copyright holder is not used to endorse products built using this software without specific written permission. DISCLAIMER This software is provided 'as is' with no explicit or implied warranties in respect of its properties, including, but not limited to, correctness and/or fitness for purpose. --------------------------------------------------------------------------- Issue Date: 20/12/2007 */ #include "Aesopt.h" #include "Aestab.h" #ifdef USE_VIA_ACE_IF_PRESENT # include "aes_via_ace.h" #endif #if defined(__cplusplus) extern "C" { #endif /* Initialise the key schedule from the user supplied key. The key length can be specified in bytes, with legal values of 16, 24 and 32, or in bits, with legal values of 128, 192 and 256. These values correspond with Nk values of 4, 6 and 8 respectively. The following macros implement a single cycle in the key schedule generation process. The number of cycles needed for each cx->n_col and nk value is: nk = 4 5 6 7 8 ------------------------------ cx->n_col = 4 10 9 8 7 7 cx->n_col = 5 14 11 10 9 9 cx->n_col = 6 19 15 12 11 11 cx->n_col = 7 21 19 16 13 14 cx->n_col = 8 29 23 19 17 14 */ #if (FUNCS_IN_C & ENC_KEYING_IN_C) #if defined(AES_128) || defined(AES_VAR) #define ke4(k,i) \ { k[4*(i)+4] = ss[0] ^= ls_box(ss[3],3) ^ t_use(r,c)[i]; \ k[4*(i)+5] = ss[1] ^= ss[0]; \ k[4*(i)+6] = ss[2] ^= ss[1]; \ k[4*(i)+7] = ss[3] ^= ss[2]; \ } AES_RETURN aes_encrypt_key128(const unsigned char *key, aes_encrypt_ctx cx[1]) { uint_32t ss[4]; cx->ks[0] = ss[0] = word_in(key, 0); cx->ks[1] = ss[1] = word_in(key, 1); cx->ks[2] = ss[2] = word_in(key, 2); cx->ks[3] = ss[3] = word_in(key, 3); #if ENC_UNROLL == NONE { uint_32t i; for(i = 0; i < 9; ++i) ke4(cx->ks, i); } #else ke4(cx->ks, 0); ke4(cx->ks, 1); ke4(cx->ks, 2); ke4(cx->ks, 3); ke4(cx->ks, 4); ke4(cx->ks, 5); ke4(cx->ks, 6); ke4(cx->ks, 7); ke4(cx->ks, 8); #endif ke4(cx->ks, 9); cx->inf.l = 0; cx->inf.b[0] = 10 * 16; #ifdef USE_VIA_ACE_IF_PRESENT if(VIA_ACE_AVAILABLE) cx->inf.b[1] = 0xff; #endif #if defined( AES_ERR_CHK ) return EXIT_SUCCESS; #endif } #endif #if defined(AES_192) || defined(AES_VAR) #define kef6(k,i) \ { k[6*(i)+ 6] = ss[0] ^= ls_box(ss[5],3) ^ t_use(r,c)[i]; \ k[6*(i)+ 7] = ss[1] ^= ss[0]; \ k[6*(i)+ 8] = ss[2] ^= ss[1]; \ k[6*(i)+ 9] = ss[3] ^= ss[2]; \ } #define ke6(k,i) \ { kef6(k,i); \ k[6*(i)+10] = ss[4] ^= ss[3]; \ k[6*(i)+11] = ss[5] ^= ss[4]; \ } AES_RETURN aes_encrypt_key192(const unsigned char *key, aes_encrypt_ctx cx[1]) { uint_32t ss[6]; cx->ks[0] = ss[0] = word_in(key, 0); cx->ks[1] = ss[1] = word_in(key, 1); cx->ks[2] = ss[2] = word_in(key, 2); cx->ks[3] = ss[3] = word_in(key, 3); cx->ks[4] = ss[4] = word_in(key, 4); cx->ks[5] = ss[5] = word_in(key, 5); #if ENC_UNROLL == NONE { uint_32t i; for(i = 0; i < 7; ++i) ke6(cx->ks, i); } #else ke6(cx->ks, 0); ke6(cx->ks, 1); ke6(cx->ks, 2); ke6(cx->ks, 3); ke6(cx->ks, 4); ke6(cx->ks, 5); ke6(cx->ks, 6); #endif kef6(cx->ks, 7); cx->inf.l = 0; cx->inf.b[0] = 12 * 16; #ifdef USE_VIA_ACE_IF_PRESENT if(VIA_ACE_AVAILABLE) cx->inf.b[1] = 0xff; #endif #if defined( AES_ERR_CHK ) return EXIT_SUCCESS; #endif } #endif #if defined(AES_256) || defined(AES_VAR) #define kef8(k,i) \ { k[8*(i)+ 8] = ss[0] ^= ls_box(ss[7],3) ^ t_use(r,c)[i]; \ k[8*(i)+ 9] = ss[1] ^= ss[0]; \ k[8*(i)+10] = ss[2] ^= ss[1]; \ k[8*(i)+11] = ss[3] ^= ss[2]; \ } #define ke8(k,i) \ { kef8(k,i); \ k[8*(i)+12] = ss[4] ^= ls_box(ss[3],0); \ k[8*(i)+13] = ss[5] ^= ss[4]; \ k[8*(i)+14] = ss[6] ^= ss[5]; \ k[8*(i)+15] = ss[7] ^= ss[6]; \ } AES_RETURN aes_encrypt_key256(const unsigned char *key, aes_encrypt_ctx cx[1]) { uint_32t ss[8]; cx->ks[0] = ss[0] = word_in(key, 0); cx->ks[1] = ss[1] = word_in(key, 1); cx->ks[2] = ss[2] = word_in(key, 2); cx->ks[3] = ss[3] = word_in(key, 3); cx->ks[4] = ss[4] = word_in(key, 4); cx->ks[5] = ss[5] = word_in(key, 5); cx->ks[6] = ss[6] = word_in(key, 6); cx->ks[7] = ss[7] = word_in(key, 7); #if ENC_UNROLL == NONE { uint_32t i; for(i = 0; i < 6; ++i) ke8(cx->ks, i); } #else ke8(cx->ks, 0); ke8(cx->ks, 1); ke8(cx->ks, 2); ke8(cx->ks, 3); ke8(cx->ks, 4); ke8(cx->ks, 5); #endif kef8(cx->ks, 6); cx->inf.l = 0; cx->inf.b[0] = 14 * 16; #ifdef USE_VIA_ACE_IF_PRESENT if(VIA_ACE_AVAILABLE) cx->inf.b[1] = 0xff; #endif #if defined( AES_ERR_CHK ) return EXIT_SUCCESS; #endif } #endif #if defined(AES_VAR) AES_RETURN aes_encrypt_key(const unsigned char *key, int key_len, aes_encrypt_ctx cx[1]) { switch(key_len) { #if defined( AES_ERR_CHK ) case 16: case 128: return aes_encrypt_key128(key, cx); case 24: case 192: return aes_encrypt_key192(key, cx); case 32: case 256: return aes_encrypt_key256(key, cx); default: return EXIT_FAILURE; #else case 16: case 128: aes_encrypt_key128(key, cx); return; case 24: case 192: aes_encrypt_key192(key, cx); return; case 32: case 256: aes_encrypt_key256(key, cx); return; #endif } } #endif #endif #if (FUNCS_IN_C & DEC_KEYING_IN_C) /* this is used to store the decryption round keys */ /* in forward or reverse order */ #ifdef AES_REV_DKS #define v(n,i) ((n) - (i) + 2 * ((i) & 3)) #else #define v(n,i) (i) #endif #if DEC_ROUND == NO_TABLES #define ff(x) (x) #else #define ff(x) inv_mcol(x) #if defined( dec_imvars ) #define d_vars dec_imvars #endif #endif #if defined(AES_128) || defined(AES_VAR) #define k4e(k,i) \ { k[v(40,(4*(i))+4)] = ss[0] ^= ls_box(ss[3],3) ^ t_use(r,c)[i]; \ k[v(40,(4*(i))+5)] = ss[1] ^= ss[0]; \ k[v(40,(4*(i))+6)] = ss[2] ^= ss[1]; \ k[v(40,(4*(i))+7)] = ss[3] ^= ss[2]; \ } #if 1 #define kdf4(k,i) \ { ss[0] = ss[0] ^ ss[2] ^ ss[1] ^ ss[3]; \ ss[1] = ss[1] ^ ss[3]; \ ss[2] = ss[2] ^ ss[3]; \ ss[4] = ls_box(ss[(i+3) % 4], 3) ^ t_use(r,c)[i]; \ ss[i % 4] ^= ss[4]; \ ss[4] ^= k[v(40,(4*(i)))]; k[v(40,(4*(i))+4)] = ff(ss[4]); \ ss[4] ^= k[v(40,(4*(i))+1)]; k[v(40,(4*(i))+5)] = ff(ss[4]); \ ss[4] ^= k[v(40,(4*(i))+2)]; k[v(40,(4*(i))+6)] = ff(ss[4]); \ ss[4] ^= k[v(40,(4*(i))+3)]; k[v(40,(4*(i))+7)] = ff(ss[4]); \ } #define kd4(k,i) \ { ss[4] = ls_box(ss[(i+3) % 4], 3) ^ t_use(r,c)[i]; \ ss[i % 4] ^= ss[4]; ss[4] = ff(ss[4]); \ k[v(40,(4*(i))+4)] = ss[4] ^= k[v(40,(4*(i)))]; \ k[v(40,(4*(i))+5)] = ss[4] ^= k[v(40,(4*(i))+1)]; \ k[v(40,(4*(i))+6)] = ss[4] ^= k[v(40,(4*(i))+2)]; \ k[v(40,(4*(i))+7)] = ss[4] ^= k[v(40,(4*(i))+3)]; \ } #define kdl4(k,i) \ { ss[4] = ls_box(ss[(i+3) % 4], 3) ^ t_use(r,c)[i]; ss[i % 4] ^= ss[4]; \ k[v(40,(4*(i))+4)] = (ss[0] ^= ss[1]) ^ ss[2] ^ ss[3]; \ k[v(40,(4*(i))+5)] = ss[1] ^ ss[3]; \ k[v(40,(4*(i))+6)] = ss[0]; \ k[v(40,(4*(i))+7)] = ss[1]; \ } #else #define kdf4(k,i) \ { ss[0] ^= ls_box(ss[3],3) ^ t_use(r,c)[i]; k[v(40,(4*(i))+ 4)] = ff(ss[0]); \ ss[1] ^= ss[0]; k[v(40,(4*(i))+ 5)] = ff(ss[1]); \ ss[2] ^= ss[1]; k[v(40,(4*(i))+ 6)] = ff(ss[2]); \ ss[3] ^= ss[2]; k[v(40,(4*(i))+ 7)] = ff(ss[3]); \ } #define kd4(k,i) \ { ss[4] = ls_box(ss[3],3) ^ t_use(r,c)[i]; \ ss[0] ^= ss[4]; ss[4] = ff(ss[4]); k[v(40,(4*(i))+ 4)] = ss[4] ^= k[v(40,(4*(i)))]; \ ss[1] ^= ss[0]; k[v(40,(4*(i))+ 5)] = ss[4] ^= k[v(40,(4*(i))+ 1)]; \ ss[2] ^= ss[1]; k[v(40,(4*(i))+ 6)] = ss[4] ^= k[v(40,(4*(i))+ 2)]; \ ss[3] ^= ss[2]; k[v(40,(4*(i))+ 7)] = ss[4] ^= k[v(40,(4*(i))+ 3)]; \ } #define kdl4(k,i) \ { ss[0] ^= ls_box(ss[3],3) ^ t_use(r,c)[i]; k[v(40,(4*(i))+ 4)] = ss[0]; \ ss[1] ^= ss[0]; k[v(40,(4*(i))+ 5)] = ss[1]; \ ss[2] ^= ss[1]; k[v(40,(4*(i))+ 6)] = ss[2]; \ ss[3] ^= ss[2]; k[v(40,(4*(i))+ 7)] = ss[3]; \ } #endif AES_RETURN aes_decrypt_key128(const unsigned char *key, aes_decrypt_ctx cx[1]) { uint_32t ss[5]; #if defined( d_vars ) d_vars; #endif cx->ks[v(40,(0))] = ss[0] = word_in(key, 0); cx->ks[v(40,(1))] = ss[1] = word_in(key, 1); cx->ks[v(40,(2))] = ss[2] = word_in(key, 2); cx->ks[v(40,(3))] = ss[3] = word_in(key, 3); #if DEC_UNROLL == NONE { uint_32t i; for(i = 0; i < 10; ++i) k4e(cx->ks, i); #if !(DEC_ROUND == NO_TABLES) for(i = N_COLS; i < 10 * N_COLS; ++i) cx->ks[i] = inv_mcol(cx->ks[i]); #endif } #else kdf4(cx->ks, 0); kd4(cx->ks, 1); kd4(cx->ks, 2); kd4(cx->ks, 3); kd4(cx->ks, 4); kd4(cx->ks, 5); kd4(cx->ks, 6); kd4(cx->ks, 7); kd4(cx->ks, 8); kdl4(cx->ks, 9); #endif cx->inf.l = 0; cx->inf.b[0] = 10 * 16; #ifdef USE_VIA_ACE_IF_PRESENT if(VIA_ACE_AVAILABLE) cx->inf.b[1] = 0xff; #endif #if defined( AES_ERR_CHK ) return EXIT_SUCCESS; #endif } #endif #if defined(AES_192) || defined(AES_VAR) #define k6ef(k,i) \ { k[v(48,(6*(i))+ 6)] = ss[0] ^= ls_box(ss[5],3) ^ t_use(r,c)[i]; \ k[v(48,(6*(i))+ 7)] = ss[1] ^= ss[0]; \ k[v(48,(6*(i))+ 8)] = ss[2] ^= ss[1]; \ k[v(48,(6*(i))+ 9)] = ss[3] ^= ss[2]; \ } #define k6e(k,i) \ { k6ef(k,i); \ k[v(48,(6*(i))+10)] = ss[4] ^= ss[3]; \ k[v(48,(6*(i))+11)] = ss[5] ^= ss[4]; \ } #define kdf6(k,i) \ { ss[0] ^= ls_box(ss[5],3) ^ t_use(r,c)[i]; k[v(48,(6*(i))+ 6)] = ff(ss[0]); \ ss[1] ^= ss[0]; k[v(48,(6*(i))+ 7)] = ff(ss[1]); \ ss[2] ^= ss[1]; k[v(48,(6*(i))+ 8)] = ff(ss[2]); \ ss[3] ^= ss[2]; k[v(48,(6*(i))+ 9)] = ff(ss[3]); \ ss[4] ^= ss[3]; k[v(48,(6*(i))+10)] = ff(ss[4]); \ ss[5] ^= ss[4]; k[v(48,(6*(i))+11)] = ff(ss[5]); \ } #define kd6(k,i) \ { ss[6] = ls_box(ss[5],3) ^ t_use(r,c)[i]; \ ss[0] ^= ss[6]; ss[6] = ff(ss[6]); k[v(48,(6*(i))+ 6)] = ss[6] ^= k[v(48,(6*(i)))]; \ ss[1] ^= ss[0]; k[v(48,(6*(i))+ 7)] = ss[6] ^= k[v(48,(6*(i))+ 1)]; \ ss[2] ^= ss[1]; k[v(48,(6*(i))+ 8)] = ss[6] ^= k[v(48,(6*(i))+ 2)]; \ ss[3] ^= ss[2]; k[v(48,(6*(i))+ 9)] = ss[6] ^= k[v(48,(6*(i))+ 3)]; \ ss[4] ^= ss[3]; k[v(48,(6*(i))+10)] = ss[6] ^= k[v(48,(6*(i))+ 4)]; \ ss[5] ^= ss[4]; k[v(48,(6*(i))+11)] = ss[6] ^= k[v(48,(6*(i))+ 5)]; \ } #define kdl6(k,i) \ { ss[0] ^= ls_box(ss[5],3) ^ t_use(r,c)[i]; k[v(48,(6*(i))+ 6)] = ss[0]; \ ss[1] ^= ss[0]; k[v(48,(6*(i))+ 7)] = ss[1]; \ ss[2] ^= ss[1]; k[v(48,(6*(i))+ 8)] = ss[2]; \ ss[3] ^= ss[2]; k[v(48,(6*(i))+ 9)] = ss[3]; \ } AES_RETURN aes_decrypt_key192(const unsigned char *key, aes_decrypt_ctx cx[1]) { uint_32t ss[7]; #if defined( d_vars ) d_vars; #endif cx->ks[v(48,(0))] = ss[0] = word_in(key, 0); cx->ks[v(48,(1))] = ss[1] = word_in(key, 1); cx->ks[v(48,(2))] = ss[2] = word_in(key, 2); cx->ks[v(48,(3))] = ss[3] = word_in(key, 3); #if DEC_UNROLL == NONE cx->ks[v(48,(4))] = ss[4] = word_in(key, 4); cx->ks[v(48,(5))] = ss[5] = word_in(key, 5); { uint_32t i; for(i = 0; i < 7; ++i) k6e(cx->ks, i); k6ef(cx->ks, 7); #if !(DEC_ROUND == NO_TABLES) for(i = N_COLS; i < 12 * N_COLS; ++i) cx->ks[i] = inv_mcol(cx->ks[i]); #endif } #else cx->ks[v(48,(4))] = ff(ss[4] = word_in(key, 4)); cx->ks[v(48,(5))] = ff(ss[5] = word_in(key, 5)); kdf6(cx->ks, 0); kd6(cx->ks, 1); kd6(cx->ks, 2); kd6(cx->ks, 3); kd6(cx->ks, 4); kd6(cx->ks, 5); kd6(cx->ks, 6); kdl6(cx->ks, 7); #endif cx->inf.l = 0; cx->inf.b[0] = 12 * 16; #ifdef USE_VIA_ACE_IF_PRESENT if(VIA_ACE_AVAILABLE) cx->inf.b[1] = 0xff; #endif #if defined( AES_ERR_CHK ) return EXIT_SUCCESS; #endif } #endif #if defined(AES_256) || defined(AES_VAR) #define k8ef(k,i) \ { k[v(56,(8*(i))+ 8)] = ss[0] ^= ls_box(ss[7],3) ^ t_use(r,c)[i]; \ k[v(56,(8*(i))+ 9)] = ss[1] ^= ss[0]; \ k[v(56,(8*(i))+10)] = ss[2] ^= ss[1]; \ k[v(56,(8*(i))+11)] = ss[3] ^= ss[2]; \ } #define k8e(k,i) \ { k8ef(k,i); \ k[v(56,(8*(i))+12)] = ss[4] ^= ls_box(ss[3],0); \ k[v(56,(8*(i))+13)] = ss[5] ^= ss[4]; \ k[v(56,(8*(i))+14)] = ss[6] ^= ss[5]; \ k[v(56,(8*(i))+15)] = ss[7] ^= ss[6]; \ } #define kdf8(k,i) \ { ss[0] ^= ls_box(ss[7],3) ^ t_use(r,c)[i]; k[v(56,(8*(i))+ 8)] = ff(ss[0]); \ ss[1] ^= ss[0]; k[v(56,(8*(i))+ 9)] = ff(ss[1]); \ ss[2] ^= ss[1]; k[v(56,(8*(i))+10)] = ff(ss[2]); \ ss[3] ^= ss[2]; k[v(56,(8*(i))+11)] = ff(ss[3]); \ ss[4] ^= ls_box(ss[3],0); k[v(56,(8*(i))+12)] = ff(ss[4]); \ ss[5] ^= ss[4]; k[v(56,(8*(i))+13)] = ff(ss[5]); \ ss[6] ^= ss[5]; k[v(56,(8*(i))+14)] = ff(ss[6]); \ ss[7] ^= ss[6]; k[v(56,(8*(i))+15)] = ff(ss[7]); \ } #define kd8(k,i) \ { ss[8] = ls_box(ss[7],3) ^ t_use(r,c)[i]; \ ss[0] ^= ss[8]; ss[8] = ff(ss[8]); k[v(56,(8*(i))+ 8)] = ss[8] ^= k[v(56,(8*(i)))]; \ ss[1] ^= ss[0]; k[v(56,(8*(i))+ 9)] = ss[8] ^= k[v(56,(8*(i))+ 1)]; \ ss[2] ^= ss[1]; k[v(56,(8*(i))+10)] = ss[8] ^= k[v(56,(8*(i))+ 2)]; \ ss[3] ^= ss[2]; k[v(56,(8*(i))+11)] = ss[8] ^= k[v(56,(8*(i))+ 3)]; \ ss[8] = ls_box(ss[3],0); \ ss[4] ^= ss[8]; ss[8] = ff(ss[8]); k[v(56,(8*(i))+12)] = ss[8] ^= k[v(56,(8*(i))+ 4)]; \ ss[5] ^= ss[4]; k[v(56,(8*(i))+13)] = ss[8] ^= k[v(56,(8*(i))+ 5)]; \ ss[6] ^= ss[5]; k[v(56,(8*(i))+14)] = ss[8] ^= k[v(56,(8*(i))+ 6)]; \ ss[7] ^= ss[6]; k[v(56,(8*(i))+15)] = ss[8] ^= k[v(56,(8*(i))+ 7)]; \ } #define kdl8(k,i) \ { ss[0] ^= ls_box(ss[7],3) ^ t_use(r,c)[i]; k[v(56,(8*(i))+ 8)] = ss[0]; \ ss[1] ^= ss[0]; k[v(56,(8*(i))+ 9)] = ss[1]; \ ss[2] ^= ss[1]; k[v(56,(8*(i))+10)] = ss[2]; \ ss[3] ^= ss[2]; k[v(56,(8*(i))+11)] = ss[3]; \ } AES_RETURN aes_decrypt_key256(const unsigned char *key, aes_decrypt_ctx cx[1]) { uint_32t ss[9]; #if defined( d_vars ) d_vars; #endif cx->ks[v(56,(0))] = ss[0] = word_in(key, 0); cx->ks[v(56,(1))] = ss[1] = word_in(key, 1); cx->ks[v(56,(2))] = ss[2] = word_in(key, 2); cx->ks[v(56,(3))] = ss[3] = word_in(key, 3); #if DEC_UNROLL == NONE cx->ks[v(56,(4))] = ss[4] = word_in(key, 4); cx->ks[v(56,(5))] = ss[5] = word_in(key, 5); cx->ks[v(56,(6))] = ss[6] = word_in(key, 6); cx->ks[v(56,(7))] = ss[7] = word_in(key, 7); { uint_32t i; for(i = 0; i < 6; ++i) k8e(cx->ks, i); k8ef(cx->ks, 6); #if !(DEC_ROUND == NO_TABLES) for(i = N_COLS; i < 14 * N_COLS; ++i) cx->ks[i] = inv_mcol(cx->ks[i]); #endif } #else ss[4] = word_in(key, 4); cx->ks[v(56,(4))] = ff(ss[4]); ss[5] = word_in(key, 5); cx->ks[v(56,(5))] = ff(ss[5]); ss[6] = word_in(key, 6); cx->ks[v(56,(6))] = ff(ss[6]); ss[7] = word_in(key, 7); cx->ks[v(56,(7))] = ff(ss[7]); kdf8(cx->ks, 0); kd8(cx->ks, 1); kd8(cx->ks, 2); kd8(cx->ks, 3); kd8(cx->ks, 4); kd8(cx->ks, 5); kdl8(cx->ks, 6); #endif cx->inf.l = 0; cx->inf.b[0] = 14 * 16; #ifdef USE_VIA_ACE_IF_PRESENT if(VIA_ACE_AVAILABLE) cx->inf.b[1] = 0xff; #endif #if defined( AES_ERR_CHK ) return EXIT_SUCCESS; #endif } #endif #if defined(AES_VAR) AES_RETURN aes_decrypt_key(const unsigned char *key, int key_len, aes_decrypt_ctx cx[1]) { switch(key_len) { #if defined( AES_ERR_CHK ) case 16: case 128: return aes_decrypt_key128(key, cx); case 24: case 192: return aes_decrypt_key192(key, cx); case 32: case 256: return aes_decrypt_key256(key, cx); default: return EXIT_FAILURE; #else case 16: case 128: aes_decrypt_key128(key, cx); return; case 24: case 192: aes_decrypt_key192(key, cx); return; case 32: case 256: aes_decrypt_key256(key, cx); return; #endif } } #endif #endif #if defined(__cplusplus) } #endif