/* --------------------------------------------------------------------------- Copyright (c) 1998-2006, Brian Gladman, Worcester, UK. All rights reserved. LICENSE TERMS The free distribution and use of this software in both source and binary form is allowed (with or without changes) provided that: 1. distributions of this source code include the above copyright notice, this list of conditions and the following disclaimer; 2. distributions in binary form include the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other associated materials; 3. the copyright holder's name is not used to endorse products built using this software without specific written permission. ALTERNATIVELY, provided that this notice is retained in full, this product may be distributed under the terms of the GNU General Public License (GPL), in which case the provisions of the GPL apply INSTEAD OF those given above. DISCLAIMER This software is provided 'as is' with no explicit or implied warranties in respect of its properties, including, but not limited to, correctness and/or fitness for purpose. --------------------------------------------------------------------------- Issue 09/09/2006 This is an AES implementation that uses only 8-bit byte operations on the cipher state. */ #ifndef AES_H #define AES_H #if defined(__cplusplus) extern "C" { #endif /* This provides speed optimisation opportunities if 32-bit word operations are available */ #if 1 # define HAVE_UINT_32T #endif #if 1 # define AES_ENC_PREKEYED /* AES encryption with a precomputed key schedule */ #endif #if 1 # define AES_DEC_PREKEYED /* AES decryption with a precomputed key schedule */ #endif #if 0 # define AES_ENC_128_OTFK /* AES encryption with 'on the fly' 128 bit keying */ #endif #if 0 # define AES_DEC_128_OTFK /* AES decryption with 'on the fly' 128 bit keying */ #endif #if 0 # define AES_ENC_256_OTFK /* AES encryption with 'on the fly' 256 bit keying */ #endif #if 0 # define AES_DEC_256_OTFK /* AES decryption with 'on the fly' 256 bit keying */ #endif #define N_ROW 4 #define N_COL 4 #define N_BLOCK (N_ROW * N_COL) #define N_MAX_ROUNDS 14 typedef unsigned char uint_8t; typedef uint_8t return_type; typedef uint_8t length_type; typedef uint_8t uint_type; typedef unsigned char uint_8t; typedef struct { uint_8t ksch[(N_MAX_ROUNDS + 1) * N_BLOCK]; uint_8t rnd; } aes_context; /* The following calls are for a precomputed key schedule NOTE: If the length_type used for the key length is an unsigned 8-bit character, a key length of 256 bits must be entered as a length in bytes (valid inputs are hence 128, 192, 16, 24 and 32). */ #if defined( AES_ENC_PREKEYED ) || defined( AES_DEC_PREKEYED ) return_type aes_set_key( const unsigned char key[], length_type keylen, aes_context ctx[1] ); #endif #if defined( AES_ENC_PREKEYED ) return_type aes_encrypt( const unsigned char in[N_BLOCK], unsigned char out[N_BLOCK], const aes_context ctx[1] ); #endif #if defined( AES_DEC_PREKEYED ) return_type aes_decrypt( const unsigned char in[N_BLOCK], unsigned char out[N_BLOCK], const aes_context ctx[1] ); #endif /* The following calls are for 'on the fly' keying. In this case the encryption and decryption keys are different. The encryption subroutines take a key in an array of bytes in key[L] where L is 16, 24 or 32 bytes for key lengths of 128, 192, and 256 bits respectively. They then encrypts the input data, in[] with this key and put the reult in the output array out[]. In addition, the second key array, o_key[L], is used to output the key that is needed by the decryption subroutine to reverse the encryption operation. The two key arrays can be the same array but in this case the original key will be overwritten. In the same way, the decryption subroutines output keys that can be used to reverse their effect when used for encryption. Only 128 and 256 bit keys are supported in these 'on the fly' modes. */ #if defined( AES_ENC_128_OTFK ) void aes_encrypt_128( const unsigned char in[N_BLOCK], unsigned char out[N_BLOCK], const unsigned char key[N_BLOCK], uint_8t o_key[N_BLOCK] ); #endif #if defined( AES_DEC_128_OTFK ) void aes_decrypt_128( const unsigned char in[N_BLOCK], unsigned char out[N_BLOCK], const unsigned char key[N_BLOCK], unsigned char o_key[N_BLOCK] ); #endif #if defined( AES_ENC_256_OTFK ) void aes_encrypt_256( const unsigned char in[N_BLOCK], unsigned char out[N_BLOCK], const unsigned char key[2 * N_BLOCK], unsigned char o_key[2 * N_BLOCK] ); #endif #if defined( AES_DEC_256_OTFK ) void aes_decrypt_256( const unsigned char in[N_BLOCK], unsigned char out[N_BLOCK], const unsigned char key[2 * N_BLOCK], unsigned char o_key[2 * N_BLOCK] ); #endif #if defined(__cplusplus) } #endif #endif