/* CpuArch.c -- CPU specific code 2023-05-18 : Igor Pavlov : Public domain */ #include "Precomp.h" // #include #include "CpuArch.h" #ifdef MY_CPU_X86_OR_AMD64 #undef NEED_CHECK_FOR_CPUID #if !defined(MY_CPU_AMD64) #define NEED_CHECK_FOR_CPUID #endif /* cpuid instruction supports (subFunction) parameter in ECX, that is used only with some specific (function) parameter values. But we always use only (subFunction==0). */ /* __cpuid(): MSVC and GCC/CLANG use same function/macro name but parameters are different. We use MSVC __cpuid() parameters style for our z7_x86_cpuid() function. */ #if defined(__GNUC__) /* && (__GNUC__ >= 10) */ \ || defined(__clang__) /* && (__clang_major__ >= 10) */ /* there was some CLANG/GCC compilers that have issues with rbx(ebx) handling in asm blocks in -fPIC mode (__PIC__ is defined). compiler's contains the macro __cpuid() that is similar to our code. The history of __cpuid() changes in CLANG/GCC: GCC: 2007: it preserved ebx for (__PIC__ && __i386__) 2013: it preserved rbx and ebx for __PIC__ 2014: it doesn't preserves rbx and ebx anymore we suppose that (__GNUC__ >= 5) fixed that __PIC__ ebx/rbx problem. CLANG: 2014+: it preserves rbx, but only for 64-bit code. No __PIC__ check. Why CLANG cares about 64-bit mode only, and doesn't care about ebx (in 32-bit)? Do we need __PIC__ test for CLANG or we must care about rbx even if __PIC__ is not defined? */ #define ASM_LN "\n" #if defined(MY_CPU_AMD64) && defined(__PIC__) \ && ((defined (__GNUC__) && (__GNUC__ < 5)) || defined(__clang__)) #define x86_cpuid_MACRO(p, func) { \ __asm__ __volatile__ ( \ ASM_LN "mov %%rbx, %q1" \ ASM_LN "cpuid" \ ASM_LN "xchg %%rbx, %q1" \ : "=a" ((p)[0]), "=&r" ((p)[1]), "=c" ((p)[2]), "=d" ((p)[3]) : "0" (func), "2"(0)); } /* "=&r" selects free register. It can select even rbx, if that register is free. "=&D" for (RDI) also works, but the code can be larger with "=&D" "2"(0) means (subFunction = 0), 2 is (zero-based) index in the output constraint list "=c" (ECX). */ #elif defined(MY_CPU_X86) && defined(__PIC__) \ && ((defined (__GNUC__) && (__GNUC__ < 5)) || defined(__clang__)) #define x86_cpuid_MACRO(p, func) { \ __asm__ __volatile__ ( \ ASM_LN "mov %%ebx, %k1" \ ASM_LN "cpuid" \ ASM_LN "xchg %%ebx, %k1" \ : "=a" ((p)[0]), "=&r" ((p)[1]), "=c" ((p)[2]), "=d" ((p)[3]) : "0" (func), "2"(0)); } #else #define x86_cpuid_MACRO(p, func) { \ __asm__ __volatile__ ( \ ASM_LN "cpuid" \ : "=a" ((p)[0]), "=b" ((p)[1]), "=c" ((p)[2]), "=d" ((p)[3]) : "0" (func), "2"(0)); } #endif void Z7_FASTCALL z7_x86_cpuid(UInt32 p[4], UInt32 func) { x86_cpuid_MACRO(p, func) } Z7_NO_INLINE UInt32 Z7_FASTCALL z7_x86_cpuid_GetMaxFunc(void) { #if defined(NEED_CHECK_FOR_CPUID) #define EFALGS_CPUID_BIT 21 UInt32 a; __asm__ __volatile__ ( ASM_LN "pushf" ASM_LN "pushf" ASM_LN "pop %0" // ASM_LN "movl %0, %1" // ASM_LN "xorl $0x200000, %0" ASM_LN "btc %1, %0" ASM_LN "push %0" ASM_LN "popf" ASM_LN "pushf" ASM_LN "pop %0" ASM_LN "xorl (%%esp), %0" ASM_LN "popf" ASM_LN : "=&r" (a) // "=a" : "i" (EFALGS_CPUID_BIT) ); if ((a & (1 << EFALGS_CPUID_BIT)) == 0) return 0; #endif { UInt32 p[4]; x86_cpuid_MACRO(p, 0) return p[0]; } } #undef ASM_LN #elif !defined(_MSC_VER) /* // for gcc/clang and other: we can try to use __cpuid macro: #include void Z7_FASTCALL z7_x86_cpuid(UInt32 p[4], UInt32 func) { __cpuid(func, p[0], p[1], p[2], p[3]); } UInt32 Z7_FASTCALL z7_x86_cpuid_GetMaxFunc(void) { return (UInt32)__get_cpuid_max(0, NULL); } */ // for unsupported cpuid: void Z7_FASTCALL z7_x86_cpuid(UInt32 p[4], UInt32 func) { UNUSED_VAR(func) p[0] = p[1] = p[2] = p[3] = 0; } UInt32 Z7_FASTCALL z7_x86_cpuid_GetMaxFunc(void) { return 0; } #else // _MSC_VER #if !defined(MY_CPU_AMD64) UInt32 __declspec(naked) Z7_FASTCALL z7_x86_cpuid_GetMaxFunc(void) { #if defined(NEED_CHECK_FOR_CPUID) #define EFALGS_CPUID_BIT 21 __asm pushfd __asm pushfd /* __asm pop eax // __asm mov edx, eax __asm btc eax, EFALGS_CPUID_BIT __asm push eax */ __asm btc dword ptr [esp], EFALGS_CPUID_BIT __asm popfd __asm pushfd __asm pop eax // __asm xor eax, edx __asm xor eax, [esp] // __asm push edx __asm popfd __asm and eax, (1 shl EFALGS_CPUID_BIT) __asm jz end_func #endif __asm push ebx __asm xor eax, eax // func __asm xor ecx, ecx // subFunction (optional) for (func == 0) __asm cpuid __asm pop ebx #if defined(NEED_CHECK_FOR_CPUID) end_func: #endif __asm ret 0 } void __declspec(naked) Z7_FASTCALL z7_x86_cpuid(UInt32 p[4], UInt32 func) { UNUSED_VAR(p) UNUSED_VAR(func) __asm push ebx __asm push edi __asm mov edi, ecx // p __asm mov eax, edx // func __asm xor ecx, ecx // subfunction (optional) for (func == 0) __asm cpuid __asm mov [edi ], eax __asm mov [edi + 4], ebx __asm mov [edi + 8], ecx __asm mov [edi + 12], edx __asm pop edi __asm pop ebx __asm ret 0 } #else // MY_CPU_AMD64 #if _MSC_VER >= 1600 #include #define MY_cpuidex __cpuidex #else /* __cpuid (func == (0 or 7)) requires subfunction number in ECX. MSDN: The __cpuid intrinsic clears the ECX register before calling the cpuid instruction. __cpuid() in new MSVC clears ECX. __cpuid() in old MSVC (14.00) x64 doesn't clear ECX We still can use __cpuid for low (func) values that don't require ECX, but __cpuid() in old MSVC will be incorrect for some func values: (func == 7). So here we use the hack for old MSVC to send (subFunction) in ECX register to cpuid instruction, where ECX value is first parameter for FASTCALL / NO_INLINE func, So the caller of MY_cpuidex_HACK() sets ECX as subFunction, and old MSVC for __cpuid() doesn't change ECX and cpuid instruction gets (subFunction) value. DON'T remove Z7_NO_INLINE and Z7_FASTCALL for MY_cpuidex_HACK(): !!! */ static Z7_NO_INLINE void Z7_FASTCALL MY_cpuidex_HACK(UInt32 subFunction, UInt32 func, int *CPUInfo) { UNUSED_VAR(subFunction) __cpuid(CPUInfo, func); } #define MY_cpuidex(info, func, func2) MY_cpuidex_HACK(func2, func, info) #pragma message("======== MY_cpuidex_HACK WAS USED ========") #endif // _MSC_VER >= 1600 #if !defined(MY_CPU_AMD64) /* inlining for __cpuid() in MSVC x86 (32-bit) produces big ineffective code, so we disable inlining here */ Z7_NO_INLINE #endif void Z7_FASTCALL z7_x86_cpuid(UInt32 p[4], UInt32 func) { MY_cpuidex((int *)p, (int)func, 0); } Z7_NO_INLINE UInt32 Z7_FASTCALL z7_x86_cpuid_GetMaxFunc(void) { int a[4]; MY_cpuidex(a, 0, 0); return a[0]; } #endif // MY_CPU_AMD64 #endif // _MSC_VER #if defined(NEED_CHECK_FOR_CPUID) #define CHECK_CPUID_IS_SUPPORTED { if (z7_x86_cpuid_GetMaxFunc() == 0) return 0; } #else #define CHECK_CPUID_IS_SUPPORTED #endif #undef NEED_CHECK_FOR_CPUID static BoolInt x86cpuid_Func_1(UInt32 *p) { CHECK_CPUID_IS_SUPPORTED z7_x86_cpuid(p, 1); return True; } /* static const UInt32 kVendors[][1] = { { 0x756E6547 }, // , 0x49656E69, 0x6C65746E }, { 0x68747541 }, // , 0x69746E65, 0x444D4163 }, { 0x746E6543 } // , 0x48727561, 0x736C7561 } }; */ /* typedef struct { UInt32 maxFunc; UInt32 vendor[3]; UInt32 ver; UInt32 b; UInt32 c; UInt32 d; } Cx86cpuid; enum { CPU_FIRM_INTEL, CPU_FIRM_AMD, CPU_FIRM_VIA }; int x86cpuid_GetFirm(const Cx86cpuid *p); #define x86cpuid_ver_GetFamily(ver) (((ver >> 16) & 0xff0) | ((ver >> 8) & 0xf)) #define x86cpuid_ver_GetModel(ver) (((ver >> 12) & 0xf0) | ((ver >> 4) & 0xf)) #define x86cpuid_ver_GetStepping(ver) (ver & 0xf) int x86cpuid_GetFirm(const Cx86cpuid *p) { unsigned i; for (i = 0; i < sizeof(kVendors) / sizeof(kVendors[0]); i++) { const UInt32 *v = kVendors[i]; if (v[0] == p->vendor[0] // && v[1] == p->vendor[1] // && v[2] == p->vendor[2] ) return (int)i; } return -1; } BoolInt CPU_Is_InOrder() { Cx86cpuid p; UInt32 family, model; if (!x86cpuid_CheckAndRead(&p)) return True; family = x86cpuid_ver_GetFamily(p.ver); model = x86cpuid_ver_GetModel(p.ver); switch (x86cpuid_GetFirm(&p)) { case CPU_FIRM_INTEL: return (family < 6 || (family == 6 && ( // In-Order Atom CPU model == 0x1C // 45 nm, N4xx, D4xx, N5xx, D5xx, 230, 330 || model == 0x26 // 45 nm, Z6xx || model == 0x27 // 32 nm, Z2460 || model == 0x35 // 32 nm, Z2760 || model == 0x36 // 32 nm, N2xxx, D2xxx ))); case CPU_FIRM_AMD: return (family < 5 || (family == 5 && (model < 6 || model == 0xA))); case CPU_FIRM_VIA: return (family < 6 || (family == 6 && model < 0xF)); } return False; // v23 : unknown processors are not In-Order } */ #ifdef _WIN32 #include "7zWindows.h" #endif #if !defined(MY_CPU_AMD64) && defined(_WIN32) /* for legacy SSE ia32: there is no user-space cpu instruction to check that OS supports SSE register storing/restoring on context switches. So we need some OS-specific function to check that it's safe to use SSE registers. */ Z7_FORCE_INLINE static BoolInt CPU_Sys_Is_SSE_Supported(void) { #ifdef _MSC_VER #pragma warning(push) #pragma warning(disable : 4996) // `GetVersion': was declared deprecated #endif /* low byte is major version of Windows We suppose that any Windows version since Windows2000 (major == 5) supports SSE registers */ return (Byte)GetVersion() >= 5; #if defined(_MSC_VER) #pragma warning(pop) #endif } #define CHECK_SYS_SSE_SUPPORT if (!CPU_Sys_Is_SSE_Supported()) return False; #else #define CHECK_SYS_SSE_SUPPORT #endif #if !defined(MY_CPU_AMD64) BoolInt CPU_IsSupported_CMOV(void) { UInt32 a[4]; if (!x86cpuid_Func_1(&a[0])) return 0; return (a[3] >> 15) & 1; } BoolInt CPU_IsSupported_SSE(void) { UInt32 a[4]; CHECK_SYS_SSE_SUPPORT if (!x86cpuid_Func_1(&a[0])) return 0; return (a[3] >> 25) & 1; } BoolInt CPU_IsSupported_SSE2(void) { UInt32 a[4]; CHECK_SYS_SSE_SUPPORT if (!x86cpuid_Func_1(&a[0])) return 0; return (a[3] >> 26) & 1; } #endif static UInt32 x86cpuid_Func_1_ECX(void) { UInt32 a[4]; CHECK_SYS_SSE_SUPPORT if (!x86cpuid_Func_1(&a[0])) return 0; return a[2]; } BoolInt CPU_IsSupported_AES(void) { return (x86cpuid_Func_1_ECX() >> 25) & 1; } BoolInt CPU_IsSupported_SSSE3(void) { return (x86cpuid_Func_1_ECX() >> 9) & 1; } BoolInt CPU_IsSupported_SSE41(void) { return (x86cpuid_Func_1_ECX() >> 19) & 1; } BoolInt CPU_IsSupported_SHA(void) { CHECK_SYS_SSE_SUPPORT if (z7_x86_cpuid_GetMaxFunc() < 7) return False; { UInt32 d[4]; z7_x86_cpuid(d, 7); return (d[1] >> 29) & 1; } } /* MSVC: _xgetbv() intrinsic is available since VS2010SP1. MSVC also defines (_XCR_XFEATURE_ENABLED_MASK) macro in that we can use or check. For any 32-bit x86 we can use asm code in MSVC, but MSVC asm code is huge after compilation. So _xgetbv() is better ICC: _xgetbv() intrinsic is available (in what version of ICC?) ICC defines (__GNUC___) and it supports gnu assembler also ICC supports MASM style code with -use-msasm switch. but ICC doesn't support __attribute__((__target__)) GCC/CLANG 9: _xgetbv() is macro that works via __builtin_ia32_xgetbv() and we need __attribute__((__target__("xsave")). But with __target__("xsave") the function will be not inlined to function that has no __target__("xsave") attribute. If we want _xgetbv() call inlining, then we should use asm version instead of calling _xgetbv(). Note:intrinsic is broke before GCC 8.2: https://gcc.gnu.org/bugzilla/show_bug.cgi?id=85684 */ #if defined(__INTEL_COMPILER) && (__INTEL_COMPILER >= 1100) \ || defined(_MSC_VER) && (_MSC_VER >= 1600) && (_MSC_FULL_VER >= 160040219) \ || defined(__GNUC__) && (__GNUC__ >= 9) \ || defined(__clang__) && (__clang_major__ >= 9) // we define ATTRIB_XGETBV, if we want to use predefined _xgetbv() from compiler #if defined(__INTEL_COMPILER) #define ATTRIB_XGETBV #elif defined(__GNUC__) || defined(__clang__) // we don't define ATTRIB_XGETBV here, because asm version is better for inlining. // #define ATTRIB_XGETBV __attribute__((__target__("xsave"))) #else #define ATTRIB_XGETBV #endif #endif #if defined(ATTRIB_XGETBV) #include #endif // XFEATURE_ENABLED_MASK/XCR0 #define MY_XCR_XFEATURE_ENABLED_MASK 0 #if defined(ATTRIB_XGETBV) ATTRIB_XGETBV #endif static UInt64 x86_xgetbv_0(UInt32 num) { #if defined(ATTRIB_XGETBV) { return #if (defined(_MSC_VER)) _xgetbv(num); #else __builtin_ia32_xgetbv( #if !defined(__clang__) (int) #endif num); #endif } #elif defined(__GNUC__) || defined(__clang__) || defined(__SUNPRO_CC) UInt32 a, d; #if defined(__GNUC__) && (__GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 4)) __asm__ ( "xgetbv" : "=a"(a), "=d"(d) : "c"(num) : "cc" ); #else // is old gcc __asm__ ( ".byte 0x0f, 0x01, 0xd0" "\n\t" : "=a"(a), "=d"(d) : "c"(num) : "cc" ); #endif return ((UInt64)d << 32) | a; // return a; #elif defined(_MSC_VER) && !defined(MY_CPU_AMD64) UInt32 a, d; __asm { push eax push edx push ecx mov ecx, num; // xor ecx, ecx // = MY_XCR_XFEATURE_ENABLED_MASK _emit 0x0f _emit 0x01 _emit 0xd0 mov a, eax mov d, edx pop ecx pop edx pop eax } return ((UInt64)d << 32) | a; // return a; #else // it's unknown compiler // #error "Need xgetbv function" UNUSED_VAR(num) // for MSVC-X64 we could call external function from external file. /* Actually we had checked OSXSAVE/AVX in cpuid before. So it's expected that OS supports at least AVX and below. */ // if (num != MY_XCR_XFEATURE_ENABLED_MASK) return 0; // if not XCR0 return // (1 << 0) | // x87 (1 << 1) // SSE | (1 << 2); // AVX #endif } #ifdef _WIN32 /* Windows versions do not know about new ISA extensions that can be introduced. But we still can use new extensions, even if Windows doesn't report about supporting them, But we can use new extensions, only if Windows knows about new ISA extension that changes the number or size of registers: SSE, AVX/XSAVE, AVX512 So it's enough to check MY_PF_AVX_INSTRUCTIONS_AVAILABLE instead of MY_PF_AVX2_INSTRUCTIONS_AVAILABLE */ #define MY_PF_XSAVE_ENABLED 17 // #define MY_PF_SSSE3_INSTRUCTIONS_AVAILABLE 36 // #define MY_PF_SSE4_1_INSTRUCTIONS_AVAILABLE 37 // #define MY_PF_SSE4_2_INSTRUCTIONS_AVAILABLE 38 // #define MY_PF_AVX_INSTRUCTIONS_AVAILABLE 39 // #define MY_PF_AVX2_INSTRUCTIONS_AVAILABLE 40 // #define MY_PF_AVX512F_INSTRUCTIONS_AVAILABLE 41 #endif BoolInt CPU_IsSupported_AVX(void) { #ifdef _WIN32 if (!IsProcessorFeaturePresent(MY_PF_XSAVE_ENABLED)) return False; /* PF_AVX_INSTRUCTIONS_AVAILABLE probably is supported starting from some latest Win10 revisions. But we need AVX in older Windows also. So we don't use the following check: */ /* if (!IsProcessorFeaturePresent(MY_PF_AVX_INSTRUCTIONS_AVAILABLE)) return False; */ #endif /* OS must use new special XSAVE/XRSTOR instructions to save AVX registers when it required for context switching. At OS statring: OS sets CR4.OSXSAVE flag to signal the processor that OS supports the XSAVE extensions. Also OS sets bitmask in XCR0 register that defines what registers will be processed by XSAVE instruction: XCR0.SSE[bit 0] - x87 registers and state XCR0.SSE[bit 1] - SSE registers and state XCR0.AVX[bit 2] - AVX registers and state CR4.OSXSAVE is reflected to CPUID.1:ECX.OSXSAVE[bit 27]. So we can read that bit in user-space. XCR0 is available for reading in user-space by new XGETBV instruction. */ { const UInt32 c = x86cpuid_Func_1_ECX(); if (0 == (1 & (c >> 28) // AVX instructions are supported by hardware & (c >> 27))) // OSXSAVE bit: XSAVE and related instructions are enabled by OS. return False; } /* also we can check CPUID.1:ECX.XSAVE [bit 26] : that shows that XSAVE, XRESTOR, XSETBV, XGETBV instructions are supported by hardware. But that check is redundant, because if OSXSAVE bit is set, then XSAVE is also set */ /* If OS have enabled XSAVE extension instructions (OSXSAVE == 1), in most cases we expect that OS also will support storing/restoring for AVX and SSE states at least. But to be ensure for that we call user-space instruction XGETBV(0) to get XCR0 value that contains bitmask that defines what exact states(registers) OS have enabled for storing/restoring. */ { const UInt32 bm = (UInt32)x86_xgetbv_0(MY_XCR_XFEATURE_ENABLED_MASK); // printf("\n=== XGetBV=%d\n", bm); return 1 & (bm >> 1) // SSE state is supported (set by OS) for storing/restoring & (bm >> 2); // AVX state is supported (set by OS) for storing/restoring } // since Win7SP1: we can use GetEnabledXStateFeatures(); } BoolInt CPU_IsSupported_AVX2(void) { if (!CPU_IsSupported_AVX()) return False; if (z7_x86_cpuid_GetMaxFunc() < 7) return False; { UInt32 d[4]; z7_x86_cpuid(d, 7); // printf("\ncpuid(7): ebx=%8x ecx=%8x\n", d[1], d[2]); return 1 & (d[1] >> 5); // avx2 } } BoolInt CPU_IsSupported_VAES_AVX2(void) { if (!CPU_IsSupported_AVX()) return False; if (z7_x86_cpuid_GetMaxFunc() < 7) return False; { UInt32 d[4]; z7_x86_cpuid(d, 7); // printf("\ncpuid(7): ebx=%8x ecx=%8x\n", d[1], d[2]); return 1 & (d[1] >> 5) // avx2 // & (d[1] >> 31) // avx512vl & (d[2] >> 9); // vaes // VEX-256/EVEX } } BoolInt CPU_IsSupported_PageGB(void) { CHECK_CPUID_IS_SUPPORTED { UInt32 d[4]; z7_x86_cpuid(d, 0x80000000); if (d[0] < 0x80000001) return False; z7_x86_cpuid(d, 0x80000001); return (d[3] >> 26) & 1; } } #elif defined(MY_CPU_ARM_OR_ARM64) #ifdef _WIN32 #include "7zWindows.h" BoolInt CPU_IsSupported_CRC32(void) { return IsProcessorFeaturePresent(PF_ARM_V8_CRC32_INSTRUCTIONS_AVAILABLE) ? 1 : 0; } BoolInt CPU_IsSupported_CRYPTO(void) { return IsProcessorFeaturePresent(PF_ARM_V8_CRYPTO_INSTRUCTIONS_AVAILABLE) ? 1 : 0; } BoolInt CPU_IsSupported_NEON(void) { return IsProcessorFeaturePresent(PF_ARM_NEON_INSTRUCTIONS_AVAILABLE) ? 1 : 0; } #else #if defined(__APPLE__) /* #include #include static void Print_sysctlbyname(const char *name) { size_t bufSize = 256; char buf[256]; int res = sysctlbyname(name, &buf, &bufSize, NULL, 0); { int i; printf("\nres = %d : %s : '%s' : bufSize = %d, numeric", res, name, buf, (unsigned)bufSize); for (i = 0; i < 20; i++) printf(" %2x", (unsigned)(Byte)buf[i]); } } */ /* Print_sysctlbyname("hw.pagesize"); Print_sysctlbyname("machdep.cpu.brand_string"); */ static BoolInt z7_sysctlbyname_Get_BoolInt(const char *name) { UInt32 val = 0; if (z7_sysctlbyname_Get_UInt32(name, &val) == 0 && val == 1) return 1; return 0; } BoolInt CPU_IsSupported_CRC32(void) { return z7_sysctlbyname_Get_BoolInt("hw.optional.armv8_crc32"); } BoolInt CPU_IsSupported_NEON(void) { return z7_sysctlbyname_Get_BoolInt("hw.optional.neon"); } #ifdef MY_CPU_ARM64 #define APPLE_CRYPTO_SUPPORT_VAL 1 #else #define APPLE_CRYPTO_SUPPORT_VAL 0 #endif BoolInt CPU_IsSupported_SHA1(void) { return APPLE_CRYPTO_SUPPORT_VAL; } BoolInt CPU_IsSupported_SHA2(void) { return APPLE_CRYPTO_SUPPORT_VAL; } BoolInt CPU_IsSupported_AES (void) { return APPLE_CRYPTO_SUPPORT_VAL; } #else // __APPLE__ #include #define USE_HWCAP #ifdef USE_HWCAP #include #define MY_HWCAP_CHECK_FUNC_2(name1, name2) \ BoolInt CPU_IsSupported_ ## name1() { return (getauxval(AT_HWCAP) & (HWCAP_ ## name2)) ? 1 : 0; } #ifdef MY_CPU_ARM64 #define MY_HWCAP_CHECK_FUNC(name) \ MY_HWCAP_CHECK_FUNC_2(name, name) MY_HWCAP_CHECK_FUNC_2(NEON, ASIMD) // MY_HWCAP_CHECK_FUNC (ASIMD) #elif defined(MY_CPU_ARM) #define MY_HWCAP_CHECK_FUNC(name) \ BoolInt CPU_IsSupported_ ## name() { return (getauxval(AT_HWCAP2) & (HWCAP2_ ## name)) ? 1 : 0; } MY_HWCAP_CHECK_FUNC_2(NEON, NEON) #endif #else // USE_HWCAP #define MY_HWCAP_CHECK_FUNC(name) \ BoolInt CPU_IsSupported_ ## name() { return 0; } MY_HWCAP_CHECK_FUNC(NEON) #endif // USE_HWCAP MY_HWCAP_CHECK_FUNC (CRC32) MY_HWCAP_CHECK_FUNC (SHA1) MY_HWCAP_CHECK_FUNC (SHA2) MY_HWCAP_CHECK_FUNC (AES) #endif // __APPLE__ #endif // _WIN32 #endif // MY_CPU_ARM_OR_ARM64 #ifdef __APPLE__ #include int z7_sysctlbyname_Get(const char *name, void *buf, size_t *bufSize) { return sysctlbyname(name, buf, bufSize, NULL, 0); } int z7_sysctlbyname_Get_UInt32(const char *name, UInt32 *val) { size_t bufSize = sizeof(*val); const int res = z7_sysctlbyname_Get(name, val, &bufSize); if (res == 0 && bufSize != sizeof(*val)) return EFAULT; return res; } #endif