/* Legal Notice: Some portions of the source code contained in this file were derived from the source code of Encryption for the Masses 2.02a, which is Copyright (c) 1998-2000 Paul Le Roux and which is governed by the 'License Agreement for Encryption for the Masses'. Modifications and additions to the original source code (contained in this file) and all other portions of this file are Copyright (c) 2003-2010 TrueCrypt Developers Association and are governed by the TrueCrypt License 3.0 the full text of which is contained in the file License.txt included in TrueCrypt binary and source code distribution packages. */ #include "Tcdefs.h" #include "Crypto.h" #include "Xts.h" #include "Crc.h" #include "Common/Endian.h" #include #ifndef TC_WINDOWS_BOOT #include "EncryptionThreadPool.h" #endif #include "Volumes.h" /* Update the following when adding a new cipher or EA: Crypto.h: ID #define MAX_EXPANDED_KEY #define Crypto.c: Ciphers[] EncryptionAlgorithms[] CipherInit() EncipherBlock() DecipherBlock() */ #ifndef TC_WINDOWS_BOOT_SINGLE_CIPHER_MODE // Cipher configuration static Cipher Ciphers[] = { // Block Size Key Size Key Schedule Size // ID Name (Bytes) (Bytes) (Bytes) { AES, "AES", 16, 32, AES_KS }, { SERPENT, "Serpent", 16, 32, 140*4 }, { TWOFISH, "Twofish", 16, 32, TWOFISH_KS }, #ifndef TC_WINDOWS_BOOT { BLOWFISH, "Blowfish", 8, 56, sizeof (BF_KEY) }, // Deprecated/legacy { CAST, "CAST5", 8, 16, sizeof (CAST_KEY) }, // Deprecated/legacy { TRIPLEDES,"Triple DES", 8, 8*3, sizeof (TDES_KEY) }, // Deprecated/legacy #endif { 0, 0, 0, 0, 0 } }; // Encryption algorithm configuration // The following modes have been deprecated (legacy): LRW, CBC, INNER_CBC, OUTER_CBC static EncryptionAlgorithm EncryptionAlgorithms[] = { // Cipher(s) Modes FormatEnabled #ifndef TC_WINDOWS_BOOT { { 0, 0 }, { 0, 0, 0, 0 }, 0 }, // Must be all-zero { { AES, 0 }, { XTS, LRW, CBC, 0 }, 1 }, { { SERPENT, 0 }, { XTS, LRW, CBC, 0 }, 1 }, { { TWOFISH, 0 }, { XTS, LRW, CBC, 0 }, 1 }, { { TWOFISH, AES, 0 }, { XTS, LRW, OUTER_CBC, 0 }, 1 }, { { SERPENT, TWOFISH, AES, 0 }, { XTS, LRW, OUTER_CBC, 0 }, 1 }, { { AES, SERPENT, 0 }, { XTS, LRW, OUTER_CBC, 0 }, 1 }, { { AES, TWOFISH, SERPENT, 0 }, { XTS, LRW, OUTER_CBC, 0 }, 1 }, { { SERPENT, TWOFISH, 0 }, { XTS, LRW, OUTER_CBC, 0 }, 1 }, { { BLOWFISH, 0 }, { LRW, CBC, 0, 0 }, 0 }, // Deprecated/legacy { { CAST, 0 }, { LRW, CBC, 0, 0 }, 0 }, // Deprecated/legacy { { TRIPLEDES, 0 }, { LRW, CBC, 0, 0 }, 0 }, // Deprecated/legacy { { BLOWFISH, AES, 0 }, { INNER_CBC, 0, 0, 0 }, 0 }, // Deprecated/legacy { { SERPENT, BLOWFISH, AES, 0 }, { INNER_CBC, 0, 0, 0 }, 0 }, // Deprecated/legacy { { 0, 0 }, { 0, 0, 0, 0 }, 0 } // Must be all-zero #else // TC_WINDOWS_BOOT // Encryption algorithms available for boot drive encryption { { 0, 0 }, { 0, 0 }, 0 }, // Must be all-zero { { AES, 0 }, { XTS, 0 }, 1 }, { { SERPENT, 0 }, { XTS, 0 }, 1 }, { { TWOFISH, 0 }, { XTS, 0 }, 1 }, { { TWOFISH, AES, 0 }, { XTS, 0 }, 1 }, { { SERPENT, TWOFISH, AES, 0 }, { XTS, 0 }, 1 }, { { AES, SERPENT, 0 }, { XTS, 0 }, 1 }, { { AES, TWOFISH, SERPENT, 0 }, { XTS, 0 }, 1 }, { { SERPENT, TWOFISH, 0 }, { XTS, 0 }, 1 }, { { 0, 0 }, { 0, 0 }, 0 }, // Must be all-zero #endif }; // Hash algorithms static Hash Hashes[] = { // ID Name Deprecated System Encryption { RIPEMD160, "RIPEMD-160", FALSE, TRUE }, #ifndef TC_WINDOWS_BOOT { SHA512, "SHA-512", FALSE, FALSE }, { WHIRLPOOL, "Whirlpool", FALSE, FALSE }, { SHA1, "SHA-1", TRUE, FALSE }, // Deprecated/legacy #endif { 0, 0, 0 } }; /* Return values: 0 = success, ERR_CIPHER_INIT_FAILURE (fatal), ERR_CIPHER_INIT_WEAK_KEY (non-fatal) */ int CipherInit (int cipher, unsigned char *key, unsigned __int8 *ks) { int retVal = ERR_SUCCESS; switch (cipher) { case AES: #ifndef TC_WINDOWS_BOOT if (aes_encrypt_key256 (key, (aes_encrypt_ctx *) ks) != EXIT_SUCCESS) return ERR_CIPHER_INIT_FAILURE; if (aes_decrypt_key256 (key, (aes_decrypt_ctx *) (ks + sizeof(aes_encrypt_ctx))) != EXIT_SUCCESS) return ERR_CIPHER_INIT_FAILURE; #else if (aes_set_key (key, (length_type) CipherGetKeySize(AES), (aes_context *) ks) != 0) return ERR_CIPHER_INIT_FAILURE; #endif break; case SERPENT: serpent_set_key (key, CipherGetKeySize(SERPENT) * 8, ks); break; case TWOFISH: twofish_set_key ((TwofishInstance *)ks, (const u4byte *)key, CipherGetKeySize(TWOFISH) * 8); break; #ifndef TC_WINDOWS_BOOT case BLOWFISH: /* Deprecated/legacy */ BlowfishSetKey ((BF_KEY *)ks, CipherGetKeySize(BLOWFISH), key); break; case CAST: /* Deprecated/legacy */ Cast5SetKey ((CAST_KEY *) ks, CipherGetKeySize(CAST), key); break; case TRIPLEDES: /* Deprecated/legacy */ TripleDesSetKey (key, CipherGetKeySize (TRIPLEDES), (TDES_KEY *) ks); // Verify whether all three DES keys are mutually different if (((*((__int64 *) key) ^ *((__int64 *) key+1)) & 0xFEFEFEFEFEFEFEFEULL) == 0 || ((*((__int64 *) key+1) ^ *((__int64 *) key+2)) & 0xFEFEFEFEFEFEFEFEULL) == 0 || ((*((__int64 *) key) ^ *((__int64 *) key+2)) & 0xFEFEFEFEFEFEFEFEULL) == 0) retVal = ERR_CIPHER_INIT_WEAK_KEY; // Non-fatal error break; #endif // TC_WINDOWS_BOOT default: // Unknown/wrong cipher ID return ERR_CIPHER_INIT_FAILURE; } return retVal; } void EncipherBlock(int cipher, void *data, void *ks) { switch (cipher) { case AES: // In 32-bit kernel mode, due to KeSaveFloatingPointState() overhead, AES instructions can be used only when processing the whole data unit. #if (defined (_WIN64) || !defined (TC_WINDOWS_DRIVER)) && !defined (TC_WINDOWS_BOOT) if (IsAesHwCpuSupported()) aes_hw_cpu_encrypt (ks, data); else #endif aes_encrypt (data, data, ks); break; case TWOFISH: twofish_encrypt (ks, data, data); break; case SERPENT: serpent_encrypt (data, data, ks); break; #ifndef TC_WINDOWS_BOOT case BLOWFISH: BlowfishEncryptLE (data, data, ks, 1); break; // Deprecated/legacy case CAST: Cast5Encrypt (data, data, ks); break; // Deprecated/legacy case TRIPLEDES: TripleDesEncrypt (data, data, ks, 1); break; // Deprecated/legacy #endif default: TC_THROW_FATAL_EXCEPTION; // Unknown/wrong ID } } #ifndef TC_WINDOWS_BOOT void EncipherBlocks (int cipher, void *dataPtr, void *ks, size_t blockCount) { byte *data = dataPtr; #if defined (TC_WINDOWS_DRIVER) && !defined (_WIN64) KFLOATING_SAVE floatingPointState; #endif if (cipher == AES && (blockCount & (32 - 1)) == 0 && IsAesHwCpuSupported() #if defined (TC_WINDOWS_DRIVER) && !defined (_WIN64) && NT_SUCCESS (KeSaveFloatingPointState (&floatingPointState)) #endif ) { while (blockCount > 0) { aes_hw_cpu_encrypt_32_blocks (ks, data); data += 32 * 16; blockCount -= 32; } #if defined (TC_WINDOWS_DRIVER) && !defined (_WIN64) KeRestoreFloatingPointState (&floatingPointState); #endif } else { size_t blockSize = CipherGetBlockSize (cipher); while (blockCount-- > 0) { EncipherBlock (cipher, data, ks); data += blockSize; } } } #endif // !TC_WINDOWS_BOOT void DecipherBlock(int cipher, void *data, void *ks) { switch (cipher) { case SERPENT: serpent_decrypt (data, data, ks); break; case TWOFISH: twofish_decrypt (ks, data, data); break; #ifndef TC_WINDOWS_BOOT case AES: #if defined (_WIN64) || !defined (TC_WINDOWS_DRIVER) if (IsAesHwCpuSupported()) aes_hw_cpu_decrypt ((byte *) ks + sizeof (aes_encrypt_ctx), data); else #endif aes_decrypt (data, data, (void *) ((char *) ks + sizeof(aes_encrypt_ctx))); break; case BLOWFISH: BlowfishEncryptLE (data, data, ks, 0); break; // Deprecated/legacy case CAST: Cast5Decrypt (data, data, ks); break; // Deprecated/legacy case TRIPLEDES: TripleDesEncrypt (data, data, ks, 0); break; // Deprecated/legacy #else case AES: aes_decrypt (data, data, ks); break; #endif default: TC_THROW_FATAL_EXCEPTION; // Unknown/wrong ID } } #ifndef TC_WINDOWS_BOOT void DecipherBlocks (int cipher, void *dataPtr, void *ks, size_t blockCount) { byte *data = dataPtr; #if defined (TC_WINDOWS_DRIVER) && !defined (_WIN64) KFLOATING_SAVE floatingPointState; #endif if (cipher == AES && (blockCount & (32 - 1)) == 0 && IsAesHwCpuSupported() #if defined (TC_WINDOWS_DRIVER) && !defined (_WIN64) && NT_SUCCESS (KeSaveFloatingPointState (&floatingPointState)) #endif ) { while (blockCount > 0) { aes_hw_cpu_decrypt_32_blocks ((byte *) ks + sizeof (aes_encrypt_ctx), data); data += 32 * 16; blockCount -= 32; } #if defined (TC_WINDOWS_DRIVER) && !defined (_WIN64) KeRestoreFloatingPointState (&floatingPointState); #endif } else { size_t blockSize = CipherGetBlockSize (cipher); while (blockCount-- > 0) { DecipherBlock (cipher, data, ks); data += blockSize; } } } #endif // !TC_WINDOWS_BOOT // Ciphers support Cipher *CipherGet (int id) { int i; for (i = 0; Ciphers[i].Id != 0; i++) if (Ciphers[i].Id == id) return &Ciphers[i]; return NULL; } char *CipherGetName (int cipherId) { return CipherGet (cipherId) -> Name; } int CipherGetBlockSize (int cipherId) { return CipherGet (cipherId) -> BlockSize; } int CipherGetKeySize (int cipherId) { return CipherGet (cipherId) -> KeySize; } int CipherGetKeyScheduleSize (int cipherId) { return CipherGet (cipherId) -> KeyScheduleSize; } #ifndef TC_WINDOWS_BOOT BOOL CipherSupportsIntraDataUnitParallelization (int cipher) { return cipher == AES && IsAesHwCpuSupported(); } #endif // Encryption algorithms support int EAGetFirst () { return 1; } // Returns number of EAs int EAGetCount (void) { int ea, count = 0; for (ea = EAGetFirst (); ea != 0; ea = EAGetNext (ea)) { count++; } return count; } int EAGetNext (int previousEA) { int id = previousEA + 1; if (EncryptionAlgorithms[id].Ciphers[0] != 0) return id; return 0; } // Return values: 0 = success, ERR_CIPHER_INIT_FAILURE (fatal), ERR_CIPHER_INIT_WEAK_KEY (non-fatal) int EAInit (int ea, unsigned char *key, unsigned __int8 *ks) { int c, retVal = ERR_SUCCESS; if (ea == 0) return ERR_CIPHER_INIT_FAILURE; for (c = EAGetFirstCipher (ea); c != 0; c = EAGetNextCipher (ea, c)) { switch (CipherInit (c, key, ks)) { case ERR_CIPHER_INIT_FAILURE: return ERR_CIPHER_INIT_FAILURE; case ERR_CIPHER_INIT_WEAK_KEY: retVal = ERR_CIPHER_INIT_WEAK_KEY; // Non-fatal error break; } key += CipherGetKeySize (c); ks += CipherGetKeyScheduleSize (c); } return retVal; } #ifndef TC_WINDOWS_BOOT BOOL EAInitMode (PCRYPTO_INFO ci) { switch (ci->mode) { case XTS: // Secondary key schedule if (EAInit (ci->ea, ci->k2, ci->ks2) != ERR_SUCCESS) return FALSE; /* Note: XTS mode could potentially be initialized with a weak key causing all blocks in one data unit on the volume to be tweaked with zero tweaks (i.e. 512 bytes of the volume would be encrypted in ECB mode). However, to create a TrueCrypt volume with such a weak key, each human being on Earth would have to create approximately 11,378,125,361,078,862 (about eleven quadrillion) TrueCrypt volumes (provided that the size of each of the volumes is 1024 terabytes). */ break; case LRW: switch (CipherGetBlockSize (EAGetFirstCipher (ci->ea))) { case 8: /* Deprecated/legacy */ return Gf64TabInit (ci->k2, &ci->gf_ctx); case 16: return Gf128Tab64Init (ci->k2, &ci->gf_ctx); default: TC_THROW_FATAL_EXCEPTION; } break; case CBC: case INNER_CBC: case OUTER_CBC: // The mode does not need to be initialized or is initialized elsewhere return TRUE; default: // Unknown/wrong ID TC_THROW_FATAL_EXCEPTION; } return TRUE; } // Returns name of EA, cascaded cipher names are separated by hyphens char *EAGetName (char *buf, int ea) { int i = EAGetLastCipher(ea); strcpy (buf, (i != 0) ? CipherGetName (i) : "?"); while (i = EAGetPreviousCipher(ea, i)) { strcat (buf, "-"); strcat (buf, CipherGetName (i)); } return buf; } int EAGetByName (char *name) { int ea = EAGetFirst (); char n[128]; do { EAGetName (n, ea); if (strcmp (n, name) == 0) return ea; } while (ea = EAGetNext (ea)); return 0; } #endif // TC_WINDOWS_BOOT // Returns sum of key sizes of all ciphers of the EA (in bytes) int EAGetKeySize (int ea) { int i = EAGetFirstCipher (ea); int size = CipherGetKeySize (i); while (i = EAGetNextCipher (ea, i)) { size += CipherGetKeySize (i); } return size; } // Returns the first mode of operation of EA int EAGetFirstMode (int ea) { return (EncryptionAlgorithms[ea].Modes[0]); } int EAGetNextMode (int ea, int previousModeId) { int c, i = 0; while (c = EncryptionAlgorithms[ea].Modes[i++]) { if (c == previousModeId) return EncryptionAlgorithms[ea].Modes[i]; } return 0; } #ifndef TC_WINDOWS_BOOT // Returns the name of the mode of operation of the whole EA char *EAGetModeName (int ea, int mode, BOOL capitalLetters) { switch (mode) { case XTS: return "XTS"; case LRW: /* Deprecated/legacy */ return "LRW"; case CBC: { /* Deprecated/legacy */ char eaName[100]; EAGetName (eaName, ea); if (strcmp (eaName, "Triple DES") == 0) return capitalLetters ? "Outer-CBC" : "outer-CBC"; return "CBC"; } case OUTER_CBC: /* Deprecated/legacy */ return capitalLetters ? "Outer-CBC" : "outer-CBC"; case INNER_CBC: /* Deprecated/legacy */ return capitalLetters ? "Inner-CBC" : "inner-CBC"; } return "[unknown]"; } #endif // TC_WINDOWS_BOOT // Returns sum of key schedule sizes of all ciphers of the EA int EAGetKeyScheduleSize (int ea) { int i = EAGetFirstCipher(ea); int size = CipherGetKeyScheduleSize (i); while (i = EAGetNextCipher(ea, i)) { size += CipherGetKeyScheduleSize (i); } return size; } // Returns the largest key size needed by an EA for the specified mode of operation int EAGetLargestKeyForMode (int mode) { int ea, key = 0; for (ea = EAGetFirst (); ea != 0; ea = EAGetNext (ea)) { if (!EAIsModeSupported (ea, mode)) continue; if (EAGetKeySize (ea) >= key) key = EAGetKeySize (ea); } return key; } // Returns the largest key needed by any EA for any mode int EAGetLargestKey () { int ea, key = 0; for (ea = EAGetFirst (); ea != 0; ea = EAGetNext (ea)) { if (EAGetKeySize (ea) >= key) key = EAGetKeySize (ea); } return key; } // Returns number of ciphers in EA int EAGetCipherCount (int ea) { int i = 0; while (EncryptionAlgorithms[ea].Ciphers[i++]); return i - 1; } int EAGetFirstCipher (int ea) { return EncryptionAlgorithms[ea].Ciphers[0]; } int EAGetLastCipher (int ea) { int c, i = 0; while (c = EncryptionAlgorithms[ea].Ciphers[i++]); return EncryptionAlgorithms[ea].Ciphers[i - 2]; } int EAGetNextCipher (int ea, int previousCipherId) { int c, i = 0; while (c = EncryptionAlgorithms[ea].Ciphers[i++]) { if (c == previousCipherId) return EncryptionAlgorithms[ea].Ciphers[i]; } return 0; } int EAGetPreviousCipher (int ea, int previousCipherId) { int c, i = 0; if (EncryptionAlgorithms[ea].Ciphers[i++] == previousCipherId) return 0; while (c = EncryptionAlgorithms[ea].Ciphers[i++]) { if (c == previousCipherId) return EncryptionAlgorithms[ea].Ciphers[i - 2]; } return 0; } int EAIsFormatEnabled (int ea) { return EncryptionAlgorithms[ea].FormatEnabled; } // Returns TRUE if the mode of operation is supported for the encryption algorithm BOOL EAIsModeSupported (int ea, int testedMode) { int mode; for (mode = EAGetFirstMode (ea); mode != 0; mode = EAGetNextMode (ea, mode)) { if (mode == testedMode) return TRUE; } return FALSE; } Hash *HashGet (int id) { int i; for (i = 0; Hashes[i].Id != 0; i++) if (Hashes[i].Id == id) return &Hashes[i]; return 0; } int HashGetIdByName (char *name) { int i; for (i = 0; Hashes[i].Id != 0; i++) if (strcmp (Hashes[i].Name, name) == 0) return Hashes[i].Id; return 0; } char *HashGetName (int hashId) { return HashGet (hashId) -> Name; } BOOL HashIsDeprecated (int hashId) { return HashGet (hashId) -> Deprecated; } #endif // TC_WINDOWS_BOOT_SINGLE_CIPHER_MODE #ifdef TC_WINDOWS_BOOT static byte CryptoInfoBufferInUse = 0; CRYPTO_INFO CryptoInfoBuffer; #endif PCRYPTO_INFO crypto_open () { #ifndef TC_WINDOWS_BOOT /* Do the crt allocation */ PCRYPTO_INFO cryptoInfo = (PCRYPTO_INFO) TCalloc (sizeof (CRYPTO_INFO)); if (cryptoInfo == NULL) return NULL; memset (cryptoInfo, 0, sizeof (CRYPTO_INFO)); #ifndef DEVICE_DRIVER VirtualLock (cryptoInfo, sizeof (CRYPTO_INFO)); #endif cryptoInfo->ea = -1; return cryptoInfo; #else // TC_WINDOWS_BOOT #if 0 if (CryptoInfoBufferInUse) TC_THROW_FATAL_EXCEPTION; #endif CryptoInfoBufferInUse = 1; return &CryptoInfoBuffer; #endif // TC_WINDOWS_BOOT } void crypto_loadkey (PKEY_INFO keyInfo, char *lpszUserKey, int nUserKeyLen) { keyInfo->keyLength = nUserKeyLen; burn (keyInfo->userKey, sizeof (keyInfo->userKey)); memcpy (keyInfo->userKey, lpszUserKey, nUserKeyLen); } void crypto_close (PCRYPTO_INFO cryptoInfo) { #ifndef TC_WINDOWS_BOOT if (cryptoInfo != NULL) { burn (cryptoInfo, sizeof (CRYPTO_INFO)); #ifndef DEVICE_DRIVER VirtualUnlock (cryptoInfo, sizeof (CRYPTO_INFO)); #endif TCfree (cryptoInfo); } #else // TC_WINDOWS_BOOT burn (&CryptoInfoBuffer, sizeof (CryptoInfoBuffer)); CryptoInfoBufferInUse = FALSE; #endif // TC_WINDOWS_BOOT } #ifndef TC_WINDOWS_BOOT_SINGLE_CIPHER_MODE #ifndef TC_NO_COMPILER_INT64 void Xor128 (unsigned __int64 *a, unsigned __int64 *b) { *a++ ^= *b++; *a ^= *b; } void Xor64 (unsigned __int64 *a, unsigned __int64 *b) { *a ^= *b; } void EncryptBufferLRW128 (byte *buffer, uint64 length, uint64 blockIndex, PCRYPTO_INFO cryptoInfo) { /* Deprecated/legacy */ int cipher = EAGetFirstCipher (cryptoInfo->ea); int cipherCount = EAGetCipherCount (cryptoInfo->ea); unsigned __int8 *p = buffer; unsigned __int8 *ks = cryptoInfo->ks; unsigned __int8 i[8]; unsigned __int8 t[16]; unsigned __int64 b; *(unsigned __int64 *)i = BE64(blockIndex); if (length % 16) TC_THROW_FATAL_EXCEPTION; // Note that the maximum supported volume size is 8589934592 GB (i.e., 2^63 bytes). for (b = 0; b < length >> 4; b++) { Gf128MulBy64Tab (i, t, &cryptoInfo->gf_ctx); Xor128 ((unsigned __int64 *)p, (unsigned __int64 *)t); if (cipherCount > 1) { // Cipher cascade for (cipher = EAGetFirstCipher (cryptoInfo->ea); cipher != 0; cipher = EAGetNextCipher (cryptoInfo->ea, cipher)) { EncipherBlock (cipher, p, ks); ks += CipherGetKeyScheduleSize (cipher); } ks = cryptoInfo->ks; } else { EncipherBlock (cipher, p, ks); } Xor128 ((unsigned __int64 *)p, (unsigned __int64 *)t); p += 16; if (i[7] != 0xff) i[7]++; else *(unsigned __int64 *)i = BE64 ( BE64(*(unsigned __int64 *)i) + 1 ); } FAST_ERASE64 (t, sizeof(t)); } void EncryptBufferLRW64 (byte *buffer, uint64 length, uint64 blockIndex, PCRYPTO_INFO cryptoInfo) { /* Deprecated/legacy */ int cipher = EAGetFirstCipher (cryptoInfo->ea); unsigned __int8 *p = buffer; unsigned __int8 *ks = cryptoInfo->ks; unsigned __int8 i[8]; unsigned __int8 t[8]; unsigned __int64 b; *(unsigned __int64 *)i = BE64(blockIndex); if (length % 8) TC_THROW_FATAL_EXCEPTION; for (b = 0; b < length >> 3; b++) { Gf64MulTab (i, t, &cryptoInfo->gf_ctx); Xor64 ((unsigned __int64 *)p, (unsigned __int64 *)t); EncipherBlock (cipher, p, ks); Xor64 ((unsigned __int64 *)p, (unsigned __int64 *)t); p += 8; if (i[7] != 0xff) i[7]++; else *(unsigned __int64 *)i = BE64 ( BE64(*(unsigned __int64 *)i) + 1 ); } FAST_ERASE64 (t, sizeof(t)); } void DecryptBufferLRW128 (byte *buffer, uint64 length, uint64 blockIndex, PCRYPTO_INFO cryptoInfo) { /* Deprecated/legacy */ int cipher = EAGetFirstCipher (cryptoInfo->ea); int cipherCount = EAGetCipherCount (cryptoInfo->ea); unsigned __int8 *p = buffer; unsigned __int8 *ks = cryptoInfo->ks; unsigned __int8 i[8]; unsigned __int8 t[16]; unsigned __int64 b; *(unsigned __int64 *)i = BE64(blockIndex); if (length % 16) TC_THROW_FATAL_EXCEPTION; // Note that the maximum supported volume size is 8589934592 GB (i.e., 2^63 bytes). for (b = 0; b < length >> 4; b++) { Gf128MulBy64Tab (i, t, &cryptoInfo->gf_ctx); Xor128 ((unsigned __int64 *)p, (unsigned __int64 *)t); if (cipherCount > 1) { // Cipher cascade ks = cryptoInfo->ks + EAGetKeyScheduleSize (cryptoInfo->ea); for (cipher = EAGetLastCipher (cryptoInfo->ea); cipher != 0; cipher = EAGetPreviousCipher (cryptoInfo->ea, cipher)) { ks -= CipherGetKeyScheduleSize (cipher); DecipherBlock (cipher, p, ks); } } else { DecipherBlock (cipher, p, ks); } Xor128 ((unsigned __int64 *)p, (unsigned __int64 *)t); p += 16; if (i[7] != 0xff) i[7]++; else *(unsigned __int64 *)i = BE64 ( BE64(*(unsigned __int64 *)i) + 1 ); } FAST_ERASE64 (t, sizeof(t)); } void DecryptBufferLRW64 (byte *buffer, uint64 length, uint64 blockIndex, PCRYPTO_INFO cryptoInfo) { /* Deprecated/legacy */ int cipher = EAGetFirstCipher (cryptoInfo->ea); unsigned __int8 *p = buffer; unsigned __int8 *ks = cryptoInfo->ks; unsigned __int8 i[8]; unsigned __int8 t[8]; unsigned __int64 b; *(unsigned __int64 *)i = BE64(blockIndex); if (length % 8) TC_THROW_FATAL_EXCEPTION; for (b = 0; b < length >> 3; b++) { Gf64MulTab (i, t, &cryptoInfo->gf_ctx); Xor64 ((unsigned __int64 *)p, (unsigned __int64 *)t); DecipherBlock (cipher, p, ks); Xor64 ((unsigned __int64 *)p, (unsigned __int64 *)t); p += 8; if (i[7] != 0xff) i[7]++; else *(unsigned __int64 *)i = BE64 ( BE64(*(unsigned __int64 *)i) + 1 ); } FAST_ERASE64 (t, sizeof(t)); } // Initializes IV and whitening values for sector encryption/decryption in CBC mode. // IMPORTANT: This function has been deprecated (legacy). static void InitSectorIVAndWhitening (unsigned __int64 unitNo, int blockSize, unsigned __int32 *iv, unsigned __int64 *ivSeed, unsigned __int32 *whitening) { /* IMPORTANT: This function has been deprecated (legacy) */ unsigned __int64 iv64[4]; unsigned __int32 *iv32 = (unsigned __int32 *) iv64; iv64[0] = ivSeed[0] ^ LE64(unitNo); iv64[1] = ivSeed[1] ^ LE64(unitNo); iv64[2] = ivSeed[2] ^ LE64(unitNo); if (blockSize == 16) { iv64[3] = ivSeed[3] ^ LE64(unitNo); } iv[0] = iv32[0]; iv[1] = iv32[1]; switch (blockSize) { case 16: // 128-bit block iv[2] = iv32[2]; iv[3] = iv32[3]; whitening[0] = LE32( crc32int ( &iv32[4] ) ^ crc32int ( &iv32[7] ) ); whitening[1] = LE32( crc32int ( &iv32[5] ) ^ crc32int ( &iv32[6] ) ); break; case 8: // 64-bit block whitening[0] = LE32( crc32int ( &iv32[2] ) ^ crc32int ( &iv32[5] ) ); whitening[1] = LE32( crc32int ( &iv32[3] ) ^ crc32int ( &iv32[4] ) ); break; default: TC_THROW_FATAL_EXCEPTION; } } // EncryptBufferCBC (deprecated/legacy) // // data: data to be encrypted // len: number of bytes to encrypt (must be divisible by the largest cipher block size) // ks: scheduled key // iv: IV // whitening: whitening constants // ea: outer-CBC cascade ID (0 = CBC/inner-CBC) // cipher: CBC/inner-CBC cipher ID (0 = outer-CBC) static void EncryptBufferCBC (unsigned __int32 *data, unsigned int len, unsigned __int8 *ks, unsigned __int32 *iv, unsigned __int32 *whitening, int ea, int cipher) { /* IMPORTANT: This function has been deprecated (legacy) */ unsigned __int32 bufIV[4]; unsigned __int64 i; int blockSize = CipherGetBlockSize (ea != 0 ? EAGetFirstCipher (ea) : cipher); if (len % blockSize) TC_THROW_FATAL_EXCEPTION; // IV bufIV[0] = iv[0]; bufIV[1] = iv[1]; if (blockSize == 16) { bufIV[2] = iv[2]; bufIV[3] = iv[3]; } // Encrypt each block for (i = 0; i < len/blockSize; i++) { // CBC data[0] ^= bufIV[0]; data[1] ^= bufIV[1]; if (blockSize == 16) { data[2] ^= bufIV[2]; data[3] ^= bufIV[3]; } if (ea != 0) { // Outer-CBC for (cipher = EAGetFirstCipher (ea); cipher != 0; cipher = EAGetNextCipher (ea, cipher)) { EncipherBlock (cipher, data, ks); ks += CipherGetKeyScheduleSize (cipher); } ks -= EAGetKeyScheduleSize (ea); } else { // CBC/inner-CBC EncipherBlock (cipher, data, ks); } // CBC bufIV[0] = data[0]; bufIV[1] = data[1]; if (blockSize == 16) { bufIV[2] = data[2]; bufIV[3] = data[3]; } // Whitening data[0] ^= whitening[0]; data[1] ^= whitening[1]; if (blockSize == 16) { data[2] ^= whitening[0]; data[3] ^= whitening[1]; } data += blockSize / sizeof(*data); } } // DecryptBufferCBC (deprecated/legacy) // // data: data to be decrypted // len: number of bytes to decrypt (must be divisible by the largest cipher block size) // ks: scheduled key // iv: IV // whitening: whitening constants // ea: outer-CBC cascade ID (0 = CBC/inner-CBC) // cipher: CBC/inner-CBC cipher ID (0 = outer-CBC) static void DecryptBufferCBC (unsigned __int32 *data, unsigned int len, unsigned __int8 *ks, unsigned __int32 *iv, unsigned __int32 *whitening, int ea, int cipher) { /* IMPORTANT: This function has been deprecated (legacy) */ unsigned __int32 bufIV[4]; unsigned __int64 i; unsigned __int32 ct[4]; int blockSize = CipherGetBlockSize (ea != 0 ? EAGetFirstCipher (ea) : cipher); if (len % blockSize) TC_THROW_FATAL_EXCEPTION; // IV bufIV[0] = iv[0]; bufIV[1] = iv[1]; if (blockSize == 16) { bufIV[2] = iv[2]; bufIV[3] = iv[3]; } // Decrypt each block for (i = 0; i < len/blockSize; i++) { // Dewhitening data[0] ^= whitening[0]; data[1] ^= whitening[1]; if (blockSize == 16) { data[2] ^= whitening[0]; data[3] ^= whitening[1]; } // CBC ct[0] = data[0]; ct[1] = data[1]; if (blockSize == 16) { ct[2] = data[2]; ct[3] = data[3]; } if (ea != 0) { // Outer-CBC ks += EAGetKeyScheduleSize (ea); for (cipher = EAGetLastCipher (ea); cipher != 0; cipher = EAGetPreviousCipher (ea, cipher)) { ks -= CipherGetKeyScheduleSize (cipher); DecipherBlock (cipher, data, ks); } } else { // CBC/inner-CBC DecipherBlock (cipher, data, ks); } // CBC data[0] ^= bufIV[0]; data[1] ^= bufIV[1]; bufIV[0] = ct[0]; bufIV[1] = ct[1]; if (blockSize == 16) { data[2] ^= bufIV[2]; data[3] ^= bufIV[3]; bufIV[2] = ct[2]; bufIV[3] = ct[3]; } data += blockSize / sizeof(*data); } } #endif // #ifndef TC_NO_COMPILER_INT64 // EncryptBuffer // // buf: data to be encrypted; the start of the buffer is assumed to be aligned with the start of a data unit. // len: number of bytes to encrypt; must be divisible by the block size (for cascaded ciphers, divisible // by the largest block size used within the cascade) void EncryptBuffer (unsigned __int8 *buf, TC_LARGEST_COMPILER_UINT len, PCRYPTO_INFO cryptoInfo) { switch (cryptoInfo->mode) { case XTS: { unsigned __int8 *ks = cryptoInfo->ks; unsigned __int8 *ks2 = cryptoInfo->ks2; UINT64_STRUCT dataUnitNo; int cipher; // When encrypting/decrypting a buffer (typically a volume header) the sequential number // of the first XTS data unit in the buffer is always 0 and the start of the buffer is // always assumed to be aligned with the start of a data unit. dataUnitNo.LowPart = 0; dataUnitNo.HighPart = 0; for (cipher = EAGetFirstCipher (cryptoInfo->ea); cipher != 0; cipher = EAGetNextCipher (cryptoInfo->ea, cipher)) { EncryptBufferXTS (buf, len, &dataUnitNo, 0, ks, ks2, cipher); ks += CipherGetKeyScheduleSize (cipher); ks2 += CipherGetKeyScheduleSize (cipher); } } break; #ifndef TC_NO_COMPILER_INT64 case LRW: /* Deprecated/legacy */ switch (CipherGetBlockSize (EAGetFirstCipher (cryptoInfo->ea))) { case 8: EncryptBufferLRW64 ((unsigned __int8 *)buf, (unsigned __int64) len, 1, cryptoInfo); break; case 16: EncryptBufferLRW128 ((unsigned __int8 *)buf, (unsigned __int64) len, 1, cryptoInfo); break; default: TC_THROW_FATAL_EXCEPTION; } break; case CBC: case INNER_CBC: { /* Deprecated/legacy */ unsigned __int8 *ks = cryptoInfo->ks; int cipher; for (cipher = EAGetFirstCipher (cryptoInfo->ea); cipher != 0; cipher = EAGetNextCipher (cryptoInfo->ea, cipher)) { EncryptBufferCBC ((unsigned __int32 *) buf, (unsigned int) len, ks, (unsigned __int32 *) cryptoInfo->k2, (unsigned __int32 *) &cryptoInfo->k2[8], 0, cipher); ks += CipherGetKeyScheduleSize (cipher); } } break; case OUTER_CBC: /* Deprecated/legacy */ EncryptBufferCBC ((unsigned __int32 *) buf, (unsigned int) len, cryptoInfo->ks, (unsigned __int32 *) cryptoInfo->k2, (unsigned __int32 *) &cryptoInfo->k2[8], cryptoInfo->ea, 0); break; #endif // #ifndef TC_NO_COMPILER_INT64 default: // Unknown/wrong ID TC_THROW_FATAL_EXCEPTION; } } #ifndef TC_NO_COMPILER_INT64 // Converts a data unit number to the index of the first LRW block in the data unit. // Note that the maximum supported volume size is 8589934592 GB (i.e., 2^63 bytes). uint64 DataUnit2LRWIndex (uint64 dataUnit, int blockSize, PCRYPTO_INFO ci) { /* Deprecated/legacy */ if (ci->hiddenVolume) dataUnit -= ci->hiddenVolumeOffset / ENCRYPTION_DATA_UNIT_SIZE; else dataUnit -= TC_VOLUME_HEADER_SIZE_LEGACY / ENCRYPTION_DATA_UNIT_SIZE; // Compensate for the volume header size switch (blockSize) { case 8: return (dataUnit << 6) | 1; case 16: return (dataUnit << 5) | 1; default: TC_THROW_FATAL_EXCEPTION; } return 0; } #endif // #ifndef TC_NO_COMPILER_INT64 // buf: data to be encrypted // unitNo: sequential number of the data unit with which the buffer starts // nbrUnits: number of data units in the buffer void EncryptDataUnits (unsigned __int8 *buf, const UINT64_STRUCT *structUnitNo, uint32 nbrUnits, PCRYPTO_INFO ci) #ifndef TC_WINDOWS_BOOT { EncryptionThreadPoolDoWork (EncryptDataUnitsWork, buf, structUnitNo, nbrUnits, ci); } void EncryptDataUnitsCurrentThread (unsigned __int8 *buf, const UINT64_STRUCT *structUnitNo, TC_LARGEST_COMPILER_UINT nbrUnits, PCRYPTO_INFO ci) #endif // !TC_WINDOWS_BOOT { int ea = ci->ea; unsigned __int8 *ks = ci->ks; unsigned __int8 *ks2 = ci->ks2; int cipher; #ifndef TC_NO_COMPILER_INT64 void *iv = ci->k2; // Deprecated/legacy unsigned __int64 unitNo = structUnitNo->Value; unsigned __int64 *iv64 = (unsigned __int64 *) iv; // Deprecated/legacy unsigned __int32 sectorIV[4]; // Deprecated/legacy unsigned __int32 secWhitening[2]; // Deprecated/legacy #endif switch (ci->mode) { case XTS: for (cipher = EAGetFirstCipher (ea); cipher != 0; cipher = EAGetNextCipher (ea, cipher)) { EncryptBufferXTS (buf, nbrUnits * ENCRYPTION_DATA_UNIT_SIZE, structUnitNo, 0, ks, ks2, cipher); ks += CipherGetKeyScheduleSize (cipher); ks2 += CipherGetKeyScheduleSize (cipher); } break; #ifndef TC_NO_COMPILER_INT64 case LRW: /* Deprecated/legacy */ switch (CipherGetBlockSize (EAGetFirstCipher (ea))) { case 8: EncryptBufferLRW64 (buf, (unsigned __int64) nbrUnits * ENCRYPTION_DATA_UNIT_SIZE, DataUnit2LRWIndex (unitNo, 8, ci), ci); break; case 16: EncryptBufferLRW128 (buf, (unsigned __int64) nbrUnits * ENCRYPTION_DATA_UNIT_SIZE, DataUnit2LRWIndex (unitNo, 16, ci), ci); break; default: TC_THROW_FATAL_EXCEPTION; } break; case CBC: case INNER_CBC: /* Deprecated/legacy */ while (nbrUnits--) { for (cipher = EAGetFirstCipher (ea); cipher != 0; cipher = EAGetNextCipher (ea, cipher)) { InitSectorIVAndWhitening (unitNo, CipherGetBlockSize (cipher), sectorIV, iv64, secWhitening); EncryptBufferCBC ((unsigned __int32 *) buf, ENCRYPTION_DATA_UNIT_SIZE, ks, sectorIV, secWhitening, 0, cipher); ks += CipherGetKeyScheduleSize (cipher); } ks -= EAGetKeyScheduleSize (ea); buf += ENCRYPTION_DATA_UNIT_SIZE; unitNo++; } break; case OUTER_CBC: /* Deprecated/legacy */ while (nbrUnits--) { InitSectorIVAndWhitening (unitNo, CipherGetBlockSize (EAGetFirstCipher (ea)), sectorIV, iv64, secWhitening); EncryptBufferCBC ((unsigned __int32 *) buf, ENCRYPTION_DATA_UNIT_SIZE, ks, sectorIV, secWhitening, ea, 0); buf += ENCRYPTION_DATA_UNIT_SIZE; unitNo++; } break; #endif // #ifndef TC_NO_COMPILER_INT64 default: // Unknown/wrong ID TC_THROW_FATAL_EXCEPTION; } } // DecryptBuffer // // buf: data to be decrypted; the start of the buffer is assumed to be aligned with the start of a data unit. // len: number of bytes to decrypt; must be divisible by the block size (for cascaded ciphers, divisible // by the largest block size used within the cascade) void DecryptBuffer (unsigned __int8 *buf, TC_LARGEST_COMPILER_UINT len, PCRYPTO_INFO cryptoInfo) { switch (cryptoInfo->mode) { case XTS: { unsigned __int8 *ks = cryptoInfo->ks + EAGetKeyScheduleSize (cryptoInfo->ea); unsigned __int8 *ks2 = cryptoInfo->ks2 + EAGetKeyScheduleSize (cryptoInfo->ea); UINT64_STRUCT dataUnitNo; int cipher; // When encrypting/decrypting a buffer (typically a volume header) the sequential number // of the first XTS data unit in the buffer is always 0 and the start of the buffer is // always assumed to be aligned with the start of the data unit 0. dataUnitNo.LowPart = 0; dataUnitNo.HighPart = 0; for (cipher = EAGetLastCipher (cryptoInfo->ea); cipher != 0; cipher = EAGetPreviousCipher (cryptoInfo->ea, cipher)) { ks -= CipherGetKeyScheduleSize (cipher); ks2 -= CipherGetKeyScheduleSize (cipher); DecryptBufferXTS (buf, len, &dataUnitNo, 0, ks, ks2, cipher); } } break; #ifndef TC_NO_COMPILER_INT64 case LRW: /* Deprecated/legacy */ switch (CipherGetBlockSize (EAGetFirstCipher (cryptoInfo->ea))) { case 8: DecryptBufferLRW64 (buf, (unsigned __int64) len, 1, cryptoInfo); break; case 16: DecryptBufferLRW128 (buf, (unsigned __int64) len, 1, cryptoInfo); break; default: TC_THROW_FATAL_EXCEPTION; } break; case CBC: case INNER_CBC: { /* Deprecated/legacy */ unsigned __int8 *ks = cryptoInfo->ks + EAGetKeyScheduleSize (cryptoInfo->ea); int cipher; for (cipher = EAGetLastCipher (cryptoInfo->ea); cipher != 0; cipher = EAGetPreviousCipher (cryptoInfo->ea, cipher)) { ks -= CipherGetKeyScheduleSize (cipher); DecryptBufferCBC ((unsigned __int32 *) buf, (unsigned int) len, ks, (unsigned __int32 *) cryptoInfo->k2, (unsigned __int32 *) &cryptoInfo->k2[8], 0, cipher); } } break; case OUTER_CBC: /* Deprecated/legacy */ DecryptBufferCBC ((unsigned __int32 *) buf, (unsigned int) len, cryptoInfo->ks, (unsigned __int32 *) cryptoInfo->k2, (unsigned __int32 *) &cryptoInfo->k2[8], cryptoInfo->ea, 0); break; #endif // #ifndef TC_NO_COMPILER_INT64 default: // Unknown/wrong ID TC_THROW_FATAL_EXCEPTION; } } // buf: data to be decrypted // unitNo: sequential number of the data unit with which the buffer starts // nbrUnits: number of data units in the buffer void DecryptDataUnits (unsigned __int8 *buf, const UINT64_STRUCT *structUnitNo, uint32 nbrUnits, PCRYPTO_INFO ci) #ifndef TC_WINDOWS_BOOT { EncryptionThreadPoolDoWork (DecryptDataUnitsWork, buf, structUnitNo, nbrUnits, ci); } void DecryptDataUnitsCurrentThread (unsigned __int8 *buf, const UINT64_STRUCT *structUnitNo, TC_LARGEST_COMPILER_UINT nbrUnits, PCRYPTO_INFO ci) #endif // !TC_WINDOWS_BOOT { int ea = ci->ea; unsigned __int8 *ks = ci->ks; unsigned __int8 *ks2 = ci->ks2; int cipher; #ifndef TC_NO_COMPILER_INT64 void *iv = ci->k2; // Deprecated/legacy unsigned __int64 unitNo = structUnitNo->Value; unsigned __int64 *iv64 = (unsigned __int64 *) iv; // Deprecated/legacy unsigned __int32 sectorIV[4]; // Deprecated/legacy unsigned __int32 secWhitening[2]; // Deprecated/legacy #endif // #ifndef TC_NO_COMPILER_INT64 switch (ci->mode) { case XTS: ks += EAGetKeyScheduleSize (ea); ks2 += EAGetKeyScheduleSize (ea); for (cipher = EAGetLastCipher (ea); cipher != 0; cipher = EAGetPreviousCipher (ea, cipher)) { ks -= CipherGetKeyScheduleSize (cipher); ks2 -= CipherGetKeyScheduleSize (cipher); DecryptBufferXTS (buf, nbrUnits * ENCRYPTION_DATA_UNIT_SIZE, structUnitNo, 0, ks, ks2, cipher); } break; #ifndef TC_NO_COMPILER_INT64 case LRW: /* Deprecated/legacy */ switch (CipherGetBlockSize (EAGetFirstCipher (ea))) { case 8: DecryptBufferLRW64 (buf, (unsigned __int64) nbrUnits * ENCRYPTION_DATA_UNIT_SIZE, DataUnit2LRWIndex (unitNo, 8, ci), ci); break; case 16: DecryptBufferLRW128 (buf, (unsigned __int64) nbrUnits * ENCRYPTION_DATA_UNIT_SIZE, DataUnit2LRWIndex (unitNo, 16, ci), ci); break; default: TC_THROW_FATAL_EXCEPTION; } break; case CBC: case INNER_CBC: /* Deprecated/legacy */ while (nbrUnits--) { ks += EAGetKeyScheduleSize (ea); for (cipher = EAGetLastCipher (ea); cipher != 0; cipher = EAGetPreviousCipher (ea, cipher)) { InitSectorIVAndWhitening (unitNo, CipherGetBlockSize (cipher), sectorIV, iv64, secWhitening); ks -= CipherGetKeyScheduleSize (cipher); DecryptBufferCBC ((unsigned __int32 *) buf, ENCRYPTION_DATA_UNIT_SIZE, ks, sectorIV, secWhitening, 0, cipher); } buf += ENCRYPTION_DATA_UNIT_SIZE; unitNo++; } break; case OUTER_CBC: /* Deprecated/legacy */ while (nbrUnits--) { InitSectorIVAndWhitening (unitNo, CipherGetBlockSize (EAGetFirstCipher (ea)), sectorIV, iv64, secWhitening); DecryptBufferCBC ((unsigned __int32 *) buf, ENCRYPTION_DATA_UNIT_SIZE, ks, sectorIV, secWhitening, ea, 0); buf += ENCRYPTION_DATA_UNIT_SIZE; unitNo++; } break; #endif // #ifndef TC_NO_COMPILER_INT64 default: // Unknown/wrong ID TC_THROW_FATAL_EXCEPTION; } } // Returns the maximum number of bytes necessary to be generated by the PBKDF2 (PKCS #5) int GetMaxPkcs5OutSize (void) { int size = 32; size = max (size, EAGetLargestKeyForMode (XTS) * 2); // Sizes of primary + secondary keys #ifndef TC_WINDOWS_BOOT size = max (size, LEGACY_VOL_IV_SIZE + EAGetLargestKeyForMode (LRW)); // Deprecated/legacy size = max (size, LEGACY_VOL_IV_SIZE + EAGetLargestKeyForMode (CBC)); // Deprecated/legacy size = max (size, LEGACY_VOL_IV_SIZE + EAGetLargestKeyForMode (OUTER_CBC)); // Deprecated/legacy size = max (size, LEGACY_VOL_IV_SIZE + EAGetLargestKeyForMode (INNER_CBC)); // Deprecated/legacy #endif return size; } #else // TC_WINDOWS_BOOT_SINGLE_CIPHER_MODE #if !defined (TC_WINDOWS_BOOT_AES) && !defined (TC_WINDOWS_BOOT_SERPENT) && !defined (TC_WINDOWS_BOOT_TWOFISH) #error No cipher defined #endif void EncipherBlock(int cipher, void *data, void *ks) { #ifdef TC_WINDOWS_BOOT_AES if (IsAesHwCpuSupported()) aes_hw_cpu_encrypt ((byte *) ks, data); else aes_encrypt (data, data, ks); #elif defined (TC_WINDOWS_BOOT_SERPENT) serpent_encrypt (data, data, ks); #elif defined (TC_WINDOWS_BOOT_TWOFISH) twofish_encrypt (ks, data, data); #endif } void DecipherBlock(int cipher, void *data, void *ks) { #ifdef TC_WINDOWS_BOOT_AES if (IsAesHwCpuSupported()) aes_hw_cpu_decrypt ((byte *) ks + sizeof (aes_encrypt_ctx) + 14 * 16, data); else aes_decrypt (data, data, (aes_decrypt_ctx *) ((byte *) ks + sizeof(aes_encrypt_ctx))); #elif defined (TC_WINDOWS_BOOT_SERPENT) serpent_decrypt (data, data, ks); #elif defined (TC_WINDOWS_BOOT_TWOFISH) twofish_decrypt (ks, data, data); #endif } int EAGetFirst () { return 1; } int EAGetNext (int previousEA) { return 0; } int EAInit (int ea, unsigned char *key, unsigned __int8 *ks) { #ifdef TC_WINDOWS_BOOT_AES aes_init(); if (aes_encrypt_key256 (key, (aes_encrypt_ctx *) ks) != EXIT_SUCCESS) return ERR_CIPHER_INIT_FAILURE; if (aes_decrypt_key256 (key, (aes_decrypt_ctx *) (ks + sizeof (aes_encrypt_ctx))) != EXIT_SUCCESS) return ERR_CIPHER_INIT_FAILURE; #elif defined (TC_WINDOWS_BOOT_SERPENT) serpent_set_key (key, 32 * 8, ks); #elif defined (TC_WINDOWS_BOOT_TWOFISH) twofish_set_key ((TwofishInstance *)ks, (const u4byte *)key, 32 * 8); #endif return ERR_SUCCESS; } int EAGetKeySize (int ea) { return 32; } int EAGetFirstCipher (int ea) { return 1; } void EncryptBuffer (unsigned __int8 *buf, TC_LARGEST_COMPILER_UINT len, PCRYPTO_INFO cryptoInfo) { UINT64_STRUCT dataUnitNo; dataUnitNo.LowPart = 0; dataUnitNo.HighPart = 0; EncryptBufferXTS (buf, len, &dataUnitNo, 0, cryptoInfo->ks, cryptoInfo->ks2, 1); } void EncryptDataUnits (unsigned __int8 *buf, const UINT64_STRUCT *structUnitNo, TC_LARGEST_COMPILER_UINT nbrUnits, PCRYPTO_INFO ci) { EncryptBufferXTS (buf, nbrUnits * ENCRYPTION_DATA_UNIT_SIZE, structUnitNo, 0, ci->ks, ci->ks2, 1); } void DecryptBuffer (unsigned __int8 *buf, TC_LARGEST_COMPILER_UINT len, PCRYPTO_INFO cryptoInfo) { UINT64_STRUCT dataUnitNo; dataUnitNo.LowPart = 0; dataUnitNo.HighPart = 0; DecryptBufferXTS (buf, len, &dataUnitNo, 0, cryptoInfo->ks, cryptoInfo->ks2, 1); } void DecryptDataUnits (unsigned __int8 *buf, const UINT64_STRUCT *structUnitNo, TC_LARGEST_COMPILER_UINT nbrUnits, PCRYPTO_INFO ci) { DecryptBufferXTS (buf, nbrUnits * ENCRYPTION_DATA_UNIT_SIZE, structUnitNo, 0, ci->ks, ci->ks2, 1); } #endif // TC_WINDOWS_BOOT_SINGLE_CIPHER_MODE #if !defined (TC_WINDOWS_BOOT) || defined (TC_WINDOWS_BOOT_AES) static BOOL HwEncryptionDisabled = FALSE; BOOL IsAesHwCpuSupported () { static BOOL state = FALSE; static BOOL stateValid = FALSE; if (!stateValid) { state = is_aes_hw_cpu_supported() ? TRUE : FALSE; stateValid = TRUE; } return state && !HwEncryptionDisabled; } void EnableHwEncryption (BOOL enable) { #if defined (TC_WINDOWS_BOOT) if (enable) aes_hw_cpu_enable_sse(); #endif HwEncryptionDisabled = !enable; } BOOL IsHwEncryptionEnabled () { return !HwEncryptionDisabled; } #endif // !TC_WINDOWS_BOOT