/* Derived from source code of TrueCrypt 7.1a, which is Copyright (c) 2008-2012 TrueCrypt Developers Association and which is governed by the TrueCrypt License 3.0. Modifications and additions to the original source code (contained in this file) and all other portions of this file are Copyright (c) 2013-2017 IDRIX and are governed by the Apache License 2.0 the full text of which is contained in the file License.txt included in VeraCrypt binary and source code distribution packages. */ #include "Platform.h" #include "BootMemory.h" #include "BootConfig.h" #include "BootConsoleIo.h" #include "BootDebug.h" #include "BootDefs.h" #include "BootDiskIo.h" #include "BootEncryptedIo.h" #include "BootStrings.h" #include "IntFilter.h" static uint32 OriginalInt13Handler; static uint32 OriginalInt15Handler; static Registers IntRegisters; bool Int13Filter () { CheckStack(); Registers regs; memcpy (®s, &IntRegisters, sizeof (regs)); __asm sti static int ReEntryCount = -1; ++ReEntryCount; byte function = (byte) (regs.AX >> 8); #ifdef TC_TRACE_INT13 DisableScreenOutput(); PrintHex (function); Print (" EN:"); Print (ReEntryCount); Print (" SS:"); PrintHex (regs.SS); uint16 spdbg; __asm mov spdbg, sp PrintChar (' '); PrintHex (spdbg); PrintChar ('<'); PrintHex (TC_BOOT_LOADER_STACK_TOP); #endif bool passOriginalRequest = true; switch (function) { case 0x2: // Read sectors case 0x3: // Write sectors { byte drive = (byte) regs.DX; ChsAddress chs; chs.Cylinder = ((regs.CX << 2) & 0x300) | (regs.CX >> 8); chs.Head = regs.DX >> 8; chs.Sector = regs.CX & 0x3f; byte sectorCount = (byte) regs.AX; #ifdef TC_TRACE_INT13 PrintVal (": Drive", drive - TC_FIRST_BIOS_DRIVE, false); Print (" Chs: "); Print (chs); #endif uint64 sector; if (drive == BootDrive) { if (!BootDriveGeometryValid) TC_THROW_FATAL_EXCEPTION; ChsToLba (BootDriveGeometry, chs, sector); #ifdef TC_TRACE_INT13 PrintVal (" Sec", sector.LowPart, false); #endif } #ifdef TC_TRACE_INT13 PrintVal (" Count", sectorCount, false); Print (" Buf: "); PrintHex (regs.ES); PrintChar (':'); PrintHex (regs.BX); PrintEndl(); #endif if (ReEntryCount == 0 && drive == EncryptedVirtualPartition.Drive) { BiosResult result; if (function == 0x3) result = WriteEncryptedSectors (regs.ES, regs.BX, drive, sector, sectorCount); else result = ReadEncryptedSectors (regs.ES, regs.BX, drive, sector, sectorCount); __asm cli memcpy (&IntRegisters, ®s, sizeof (regs)); IntRegisters.AX = (uint16) result << 8; if (result == BiosResultSuccess) { IntRegisters.AX |= sectorCount; IntRegisters.Flags &= ~TC_X86_CARRY_FLAG; } else IntRegisters.Flags |= TC_X86_CARRY_FLAG; passOriginalRequest = false; } } break; case 0x42: // Read sectors LBA case 0x43: // Write sectors LBA { byte drive = (byte) regs.DX; BiosLbaPacket lba; CopyMemory (regs.DS, regs.SI, (byte *) &lba, sizeof (lba)); #ifdef TC_TRACE_INT13 PrintVal (": Drive", drive - TC_FIRST_BIOS_DRIVE, false); PrintVal (" Sec", lba.Sector.LowPart, false); PrintVal (" Count", lba.SectorCount, false); PrintVal (" Buf", lba.Buffer, false, true); PrintEndl(); #endif if (ReEntryCount == 0 && drive == EncryptedVirtualPartition.Drive) { BiosResult result; uint16 segment = (uint16) (lba.Buffer >> 16); uint16 offset = (uint16) lba.Buffer; if (function == 0x43) result = WriteEncryptedSectors (segment, offset, drive, lba.Sector, lba.SectorCount); else result = ReadEncryptedSectors (segment, offset, drive, lba.Sector, lba.SectorCount); __asm cli memcpy (&IntRegisters, ®s, sizeof (regs)); IntRegisters.AX = (IntRegisters.AX & 0xff) | ((uint16) result << 8); if (result == BiosResultSuccess) IntRegisters.Flags &= ~TC_X86_CARRY_FLAG; else IntRegisters.Flags |= TC_X86_CARRY_FLAG; passOriginalRequest = false; } } break; default: #ifdef TC_TRACE_INT13 PrintEndl(); #endif break; } #ifdef TC_TRACE_INT13 EnableScreenOutput(); #endif --ReEntryCount; return passOriginalRequest; } #define TC_MAX_MEMORY_MAP_SIZE 80 BiosMemoryMapEntry BiosMemoryMap[TC_MAX_MEMORY_MAP_SIZE]; static size_t BiosMemoryMapSize; static void CreateBootLoaderMemoryMapEntry (BiosMemoryMapEntry *newMapEntry, uint32 bootLoaderStart) { newMapEntry->Type = 0x2; newMapEntry->BaseAddress.HighPart = 0; newMapEntry->BaseAddress.LowPart = bootLoaderStart; newMapEntry->Length.HighPart = 0; newMapEntry->Length.LowPart = TC_BOOT_MEMORY_REQUIRED * 1024UL; } static bool CreateNewBiosMemoryMap () { // Create a new BIOS memory map presenting the memory area of the loader as reserved BiosMemoryMapSize = 0; BiosMemoryMapEntry entry; BiosMemoryMapEntry *newMapEntry = BiosMemoryMap; const BiosMemoryMapEntry *mapEnd = BiosMemoryMap + TC_MAX_MEMORY_MAP_SIZE; uint64 bootLoaderStart; bootLoaderStart.HighPart = 0; uint16 codeSeg; __asm mov codeSeg, cs bootLoaderStart.LowPart = GetLinearAddress (codeSeg, 0); uint64 bootLoaderEnd; bootLoaderEnd.HighPart = 0; bootLoaderEnd.LowPart = bootLoaderStart.LowPart + TC_BOOT_MEMORY_REQUIRED * 1024UL; bool loaderEntryInserted = false; if (GetFirstBiosMemoryMapEntry (entry)) { do { uint64 entryEnd = entry.BaseAddress + entry.Length; if (entry.Type == 0x1 && RegionsIntersect (bootLoaderStart, TC_BOOT_MEMORY_REQUIRED * 1024UL, entry.BaseAddress, entryEnd - 1)) { // Free map entry covers the boot loader area if (entry.BaseAddress < bootLoaderStart) { // Create free entry below the boot loader area if (newMapEntry >= mapEnd) goto mapOverflow; *newMapEntry = entry; newMapEntry->Length = bootLoaderStart - entry.BaseAddress; ++newMapEntry; } if (!loaderEntryInserted) { // Create reserved entry for the boot loader if it has not been done yet if (newMapEntry >= mapEnd) goto mapOverflow; CreateBootLoaderMemoryMapEntry (newMapEntry, bootLoaderStart.LowPart); ++newMapEntry; loaderEntryInserted = true; } if (bootLoaderEnd < entryEnd) { // Create free entry above the boot loader area if (newMapEntry >= mapEnd) goto mapOverflow; newMapEntry->Type = 0x1; newMapEntry->BaseAddress = bootLoaderEnd; newMapEntry->Length = entryEnd - bootLoaderEnd; ++newMapEntry; } } else { if (newMapEntry >= mapEnd) goto mapOverflow; if (!loaderEntryInserted && entry.BaseAddress > bootLoaderStart) { // Create reserved entry for the boot loader if it has not been done yet CreateBootLoaderMemoryMapEntry (newMapEntry, bootLoaderStart.LowPart); ++newMapEntry; loaderEntryInserted = true; } // Copy map entry *newMapEntry++ = entry; } } while (GetNextBiosMemoryMapEntry (entry)); } BiosMemoryMapSize = newMapEntry - BiosMemoryMap; return true; mapOverflow: size_t overSize = 0; while (GetNextBiosMemoryMapEntry (entry)) { ++overSize; } PrintErrorNoEndl ("MMP:"); Print (overSize); PrintEndl(); return false; } bool Int15Filter () { CheckStack(); #ifdef TC_TRACE_INT15 DisableScreenOutput(); Print ("15-"); PrintHex (IntRegisters.AX); Print (" SS:"); PrintHex (IntRegisters.SS); uint16 spdbg; __asm mov spdbg, sp PrintChar (' '); PrintHex (spdbg); PrintChar ('<'); PrintHex (TC_BOOT_LOADER_STACK_TOP); Print (" EAX:"); PrintHex (IntRegisters.EAX); Print (" EBX:"); PrintHex (IntRegisters.EBX); Print (" ECX:"); PrintHex (IntRegisters.ECX); Print (" EDX:"); PrintHex (IntRegisters.EDX); Print (" DI:"); PrintHex (IntRegisters.DI); PrintEndl(); #endif if (IntRegisters.EBX >= BiosMemoryMapSize) { IntRegisters.Flags |= TC_X86_CARRY_FLAG; IntRegisters.EBX = 0; IntRegisters.AX = -1; } else { CopyMemory ((byte *) &BiosMemoryMap[IntRegisters.EBX], IntRegisters.ES, IntRegisters.DI, sizeof (BiosMemoryMap[0])); IntRegisters.Flags &= ~TC_X86_CARRY_FLAG; IntRegisters.EAX = 0x534D4150UL; ++IntRegisters.EBX; if (IntRegisters.EBX >= BiosMemoryMapSize) IntRegisters.EBX = 0; IntRegisters.ECX = sizeof (BiosMemoryMap[0]); } if (IntRegisters.EBX == 0 && !(BootSectorFlags & TC_BOOT_CFG_FLAG_WINDOWS_VISTA_OR_LATER)) { // Uninstall filter when the modified map has been issued three times to prevent // problems with hardware drivers on some notebooks running Windows XP. static int CompleteMapIssueCount = 0; if (++CompleteMapIssueCount >= 3) { __asm { cli push es lea si, OriginalInt15Handler xor ax, ax mov es, ax mov di, 0x15 * 4 mov ax, [si] mov es:[di], ax mov ax, [si + 2] mov es:[di + 2], ax pop es sti } } } #ifdef TC_TRACE_INT15 BiosMemoryMapEntry entry; CopyMemory (IntRegisters.ES, IntRegisters.DI, (byte *) &entry, sizeof (entry)); PrintHex (entry.Type); PrintChar (' '); PrintHex (entry.BaseAddress); PrintChar (' '); PrintHex (entry.Length); PrintChar (' '); PrintHex (entry.BaseAddress + entry.Length); PrintEndl(); Print ("EAX:"); PrintHex (IntRegisters.EAX); Print (" EBX:"); PrintHex (IntRegisters.EBX); Print (" ECX:"); PrintHex (IntRegisters.ECX); Print (" EDX:"); PrintHex (IntRegisters.EDX); Print (" DI:"); PrintHex (IntRegisters.DI); Print (" FL:"); PrintHex (IntRegisters.Flags); PrintEndl (2); #endif #ifdef TC_TRACE_INT15 EnableScreenOutput(); #endif return false; } void IntFilterEntry () { // No automatic variables should be used in this scope as SS may change static uint16 OrigStackPointer; static uint16 OrigStackSegment; __asm { pushf pushad cli mov cs:IntRegisters.DI, di lea di, cs:IntRegisters.EAX TC_ASM_EMIT4 (66,2E,89,05) // mov [cs:di], eax lea di, cs:IntRegisters.EBX TC_ASM_EMIT4 (66,2E,89,1D) // mov [cs:di], ebx lea di, cs:IntRegisters.ECX TC_ASM_EMIT4 (66,2E,89,0D) // mov [cs:di], ecx lea di, cs:IntRegisters.EDX TC_ASM_EMIT4 (66,2E,89,15) // mov [cs:di], edx mov ax, [bp + 8] mov cs:IntRegisters.Flags, ax mov cs:IntRegisters.SI, si mov si, [bp + 2] // Int number mov cs:IntRegisters.DS, ds mov cs:IntRegisters.ES, es mov cs:IntRegisters.SS, ss // Compiler assumes SS == DS - use our stack if this condition is not met mov ax, ss mov bx, cs cmp ax, bx jz stack_ok mov cs:OrigStackPointer, sp mov cs:OrigStackSegment, ss mov ax, cs mov ss, ax mov sp, TC_BOOT_LOADER_STACK_TOP stack_ok: // DS = CS push ds push es mov ax, cs mov ds, ax mov es, ax push si // Int number // Filter request cmp si, 0x15 je filter15 cmp si, 0x13 jne $ call Int13Filter jmp s0 filter15: call Int15Filter s0: pop si // Int number pop es pop ds // Restore original SS:SP if our stack is empty cli mov bx, TC_BOOT_LOADER_STACK_TOP cmp bx, sp jnz stack_in_use mov ss, cs:OrigStackSegment mov sp, cs:OrigStackPointer stack_in_use: test ax, ax // passOriginalRequest jnz pass_request // Return results of filtered request popad popf mov ax, cs:IntRegisters.Flags mov [bp + 8], ax leave lea di, cs:IntRegisters.EAX TC_ASM_EMIT4 (66,2E,8B,05) // mov eax, [cs:di] lea di, cs:IntRegisters.EBX TC_ASM_EMIT4 (66,2E,8B,1D) // mov ebx, [cs:di] lea di, cs:IntRegisters.ECX TC_ASM_EMIT4 (66,2E,8B,0D) // mov ecx, [cs:di] lea di, cs:IntRegisters.EDX TC_ASM_EMIT4 (66,2E,8B,15) // mov edx, [cs:di] mov di, cs:IntRegisters.DI mov si, cs:IntRegisters.SI mov es, cs:IntRegisters.ES mov ds, cs:IntRegisters.DS sti add sp, 2 iret // Pass original request pass_request: sti cmp si, 0x15 je pass15 cmp si, 0x13 jne $ popad popf leave add sp, 2 jmp cs:OriginalInt13Handler pass15: popad popf leave add sp, 2 jmp cs:OriginalInt15Handler } } void Int13FilterEntry () { __asm { leave push 0x13 jmp IntFilterEntry } } static void Int15FilterEntry () { __asm { pushf cmp ax, 0xe820 // Get system memory map je filter popf leave jmp cs:OriginalInt15Handler filter: leave push 0x15 jmp IntFilterEntry } } bool InstallInterruptFilters () { #ifndef TC_WINDOWS_BOOT_RESCUE_DISK_MODE // If the filters have already been installed, it usually indicates stack corruption // and a consequent reentry of this routine without a system reset. uint32 currentInt13Handler; CopyMemory (0, 0x13 * 4, ¤tInt13Handler, sizeof (currentInt13Handler)); if (currentInt13Handler == (uint32) Int13FilterEntry) { PrintError ("Memory corrupted"); Print (TC_BOOT_STR_UPGRADE_BIOS); GetKeyboardChar(); return true; } #endif if (!CreateNewBiosMemoryMap()) return false; __asm { cli push es // Save original INT 13 handler xor ax, ax mov es, ax mov si, 0x13 * 4 lea di, OriginalInt13Handler mov ax, es:[si] mov [di], ax mov ax, es:[si + 2] mov [di + 2], ax // Install INT 13 filter lea ax, Int13FilterEntry mov es:[si], ax mov es:[si + 2], cs // Save original INT 15 handler mov si, 0x15 * 4 lea di, OriginalInt15Handler mov ax, es:[si] mov [di], ax mov ax, es:[si + 2] mov [di + 2], ax // Install INT 15 filter lea ax, Int15FilterEntry mov es:[si], ax mov es:[si + 2], cs // If the BIOS does not support system memory map (INT15 0xe820), // set amount of available memory to CS:0000 - 0:0000 cmp BiosMemoryMapSize, 1 jg mem_map_ok mov ax, cs shr ax, 10 - 4 // CS * 16 / 1024 mov es:[0x413], ax // = KBytes available mem_map_ok: pop es sti } return true; }