From c606f0866c3a2a5db3ef9bc41738ef33eb9612a9 Mon Sep 17 00:00:00 2001 From: Mounir IDRASSI Date: Sat, 22 Jun 2013 16:16:13 +0200 Subject: Add original TrueCrypt 7.1a sources --- src/Crypto/Aescrypt.c | 311 ++++++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 311 insertions(+) create mode 100644 src/Crypto/Aescrypt.c (limited to 'src/Crypto/Aescrypt.c') diff --git a/src/Crypto/Aescrypt.c b/src/Crypto/Aescrypt.c new file mode 100644 index 00000000..c77ec675 --- /dev/null +++ b/src/Crypto/Aescrypt.c @@ -0,0 +1,311 @@ +/* + --------------------------------------------------------------------------- + Copyright (c) 1998-2007, Brian Gladman, Worcester, UK. All rights reserved. + + LICENSE TERMS + + The free distribution and use of this software is allowed (with or without + changes) provided that: + + 1. source code distributions include the above copyright notice, this + list of conditions and the following disclaimer; + + 2. binary distributions include the above copyright notice, this list + of conditions and the following disclaimer in their documentation; + + 3. the name of the copyright holder is not used to endorse products + built using this software without specific written permission. + + DISCLAIMER + + This software is provided 'as is' with no explicit or implied warranties + in respect of its properties, including, but not limited to, correctness + and/or fitness for purpose. + --------------------------------------------------------------------------- + Issue Date: 20/12/2007 +*/ + +#include "Aesopt.h" +#include "Aestab.h" + +#if defined(__cplusplus) +extern "C" +{ +#endif + +#define si(y,x,k,c) (s(y,c) = word_in(x, c) ^ (k)[c]) +#define so(y,x,c) word_out(y, c, s(x,c)) + +#if defined(ARRAYS) +#define locals(y,x) x[4],y[4] +#else +#define locals(y,x) x##0,x##1,x##2,x##3,y##0,y##1,y##2,y##3 +#endif + +#define l_copy(y, x) s(y,0) = s(x,0); s(y,1) = s(x,1); \ + s(y,2) = s(x,2); s(y,3) = s(x,3); +#define state_in(y,x,k) si(y,x,k,0); si(y,x,k,1); si(y,x,k,2); si(y,x,k,3) +#define state_out(y,x) so(y,x,0); so(y,x,1); so(y,x,2); so(y,x,3) +#define round(rm,y,x,k) rm(y,x,k,0); rm(y,x,k,1); rm(y,x,k,2); rm(y,x,k,3) + +#if ( FUNCS_IN_C & ENCRYPTION_IN_C ) + +/* Visual C++ .Net v7.1 provides the fastest encryption code when using + Pentium optimiation with small code but this is poor for decryption + so we need to control this with the following VC++ pragmas +*/ + +#if defined( _MSC_VER ) && !defined( _WIN64 ) +#pragma optimize( "s", on ) +#endif + +/* Given the column (c) of the output state variable, the following + macros give the input state variables which are needed in its + computation for each row (r) of the state. All the alternative + macros give the same end values but expand into different ways + of calculating these values. In particular the complex macro + used for dynamically variable block sizes is designed to expand + to a compile time constant whenever possible but will expand to + conditional clauses on some branches (I am grateful to Frank + Yellin for this construction) +*/ + +#define fwd_var(x,r,c)\ + ( r == 0 ? ( c == 0 ? s(x,0) : c == 1 ? s(x,1) : c == 2 ? s(x,2) : s(x,3))\ + : r == 1 ? ( c == 0 ? s(x,1) : c == 1 ? s(x,2) : c == 2 ? s(x,3) : s(x,0))\ + : r == 2 ? ( c == 0 ? s(x,2) : c == 1 ? s(x,3) : c == 2 ? s(x,0) : s(x,1))\ + : ( c == 0 ? s(x,3) : c == 1 ? s(x,0) : c == 2 ? s(x,1) : s(x,2))) + +#if defined(FT4_SET) +#undef dec_fmvars +#define fwd_rnd(y,x,k,c) (s(y,c) = (k)[c] ^ four_tables(x,t_use(f,n),fwd_var,rf1,c)) +#elif defined(FT1_SET) +#undef dec_fmvars +#define fwd_rnd(y,x,k,c) (s(y,c) = (k)[c] ^ one_table(x,upr,t_use(f,n),fwd_var,rf1,c)) +#else +#define fwd_rnd(y,x,k,c) (s(y,c) = (k)[c] ^ fwd_mcol(no_table(x,t_use(s,box),fwd_var,rf1,c))) +#endif + +#if defined(FL4_SET) +#define fwd_lrnd(y,x,k,c) (s(y,c) = (k)[c] ^ four_tables(x,t_use(f,l),fwd_var,rf1,c)) +#elif defined(FL1_SET) +#define fwd_lrnd(y,x,k,c) (s(y,c) = (k)[c] ^ one_table(x,ups,t_use(f,l),fwd_var,rf1,c)) +#else +#define fwd_lrnd(y,x,k,c) (s(y,c) = (k)[c] ^ no_table(x,t_use(s,box),fwd_var,rf1,c)) +#endif + +AES_RETURN aes_encrypt(const unsigned char *in, unsigned char *out, const aes_encrypt_ctx cx[1]) +{ uint_32t locals(b0, b1); + const uint_32t *kp; +#if defined( dec_fmvars ) + dec_fmvars; /* declare variables for fwd_mcol() if needed */ +#endif + +#if defined( AES_ERR_CHK ) + if( cx->inf.b[0] != 10 * 16 && cx->inf.b[0] != 12 * 16 && cx->inf.b[0] != 14 * 16 ) + return EXIT_FAILURE; +#endif + + kp = cx->ks; + state_in(b0, in, kp); + +#if (ENC_UNROLL == FULL) + + switch(cx->inf.b[0]) + { + case 14 * 16: + round(fwd_rnd, b1, b0, kp + 1 * N_COLS); + round(fwd_rnd, b0, b1, kp + 2 * N_COLS); + kp += 2 * N_COLS; + case 12 * 16: + round(fwd_rnd, b1, b0, kp + 1 * N_COLS); + round(fwd_rnd, b0, b1, kp + 2 * N_COLS); + kp += 2 * N_COLS; + case 10 * 16: + round(fwd_rnd, b1, b0, kp + 1 * N_COLS); + round(fwd_rnd, b0, b1, kp + 2 * N_COLS); + round(fwd_rnd, b1, b0, kp + 3 * N_COLS); + round(fwd_rnd, b0, b1, kp + 4 * N_COLS); + round(fwd_rnd, b1, b0, kp + 5 * N_COLS); + round(fwd_rnd, b0, b1, kp + 6 * N_COLS); + round(fwd_rnd, b1, b0, kp + 7 * N_COLS); + round(fwd_rnd, b0, b1, kp + 8 * N_COLS); + round(fwd_rnd, b1, b0, kp + 9 * N_COLS); + round(fwd_lrnd, b0, b1, kp +10 * N_COLS); + } + +#else + +#if (ENC_UNROLL == PARTIAL) + { uint_32t rnd; + for(rnd = 0; rnd < (cx->inf.b[0] >> 5) - 1; ++rnd) + { + kp += N_COLS; + round(fwd_rnd, b1, b0, kp); + kp += N_COLS; + round(fwd_rnd, b0, b1, kp); + } + kp += N_COLS; + round(fwd_rnd, b1, b0, kp); +#else + { uint_32t rnd; + for(rnd = 0; rnd < (cx->inf.b[0] >> 4) - 1; ++rnd) + { + kp += N_COLS; + round(fwd_rnd, b1, b0, kp); + l_copy(b0, b1); + } +#endif + kp += N_COLS; + round(fwd_lrnd, b0, b1, kp); + } +#endif + + state_out(out, b0); + +#if defined( AES_ERR_CHK ) + return EXIT_SUCCESS; +#endif +} + +#endif + +#if ( FUNCS_IN_C & DECRYPTION_IN_C) + +/* Visual C++ .Net v7.1 provides the fastest encryption code when using + Pentium optimiation with small code but this is poor for decryption + so we need to control this with the following VC++ pragmas +*/ + +#if defined( _MSC_VER ) && !defined( _WIN64 ) +#pragma optimize( "t", on ) +#endif + +/* Given the column (c) of the output state variable, the following + macros give the input state variables which are needed in its + computation for each row (r) of the state. All the alternative + macros give the same end values but expand into different ways + of calculating these values. In particular the complex macro + used for dynamically variable block sizes is designed to expand + to a compile time constant whenever possible but will expand to + conditional clauses on some branches (I am grateful to Frank + Yellin for this construction) +*/ + +#define inv_var(x,r,c)\ + ( r == 0 ? ( c == 0 ? s(x,0) : c == 1 ? s(x,1) : c == 2 ? s(x,2) : s(x,3))\ + : r == 1 ? ( c == 0 ? s(x,3) : c == 1 ? s(x,0) : c == 2 ? s(x,1) : s(x,2))\ + : r == 2 ? ( c == 0 ? s(x,2) : c == 1 ? s(x,3) : c == 2 ? s(x,0) : s(x,1))\ + : ( c == 0 ? s(x,1) : c == 1 ? s(x,2) : c == 2 ? s(x,3) : s(x,0))) + +#if defined(IT4_SET) +#undef dec_imvars +#define inv_rnd(y,x,k,c) (s(y,c) = (k)[c] ^ four_tables(x,t_use(i,n),inv_var,rf1,c)) +#elif defined(IT1_SET) +#undef dec_imvars +#define inv_rnd(y,x,k,c) (s(y,c) = (k)[c] ^ one_table(x,upr,t_use(i,n),inv_var,rf1,c)) +#else +#define inv_rnd(y,x,k,c) (s(y,c) = inv_mcol((k)[c] ^ no_table(x,t_use(i,box),inv_var,rf1,c))) +#endif + +#if defined(IL4_SET) +#define inv_lrnd(y,x,k,c) (s(y,c) = (k)[c] ^ four_tables(x,t_use(i,l),inv_var,rf1,c)) +#elif defined(IL1_SET) +#define inv_lrnd(y,x,k,c) (s(y,c) = (k)[c] ^ one_table(x,ups,t_use(i,l),inv_var,rf1,c)) +#else +#define inv_lrnd(y,x,k,c) (s(y,c) = (k)[c] ^ no_table(x,t_use(i,box),inv_var,rf1,c)) +#endif + +/* This code can work with the decryption key schedule in the */ +/* order that is used for encrytpion (where the 1st decryption */ +/* round key is at the high end ot the schedule) or with a key */ +/* schedule that has been reversed to put the 1st decryption */ +/* round key at the low end of the schedule in memory (when */ +/* AES_REV_DKS is defined) */ + +#ifdef AES_REV_DKS +#define key_ofs 0 +#define rnd_key(n) (kp + n * N_COLS) +#else +#define key_ofs 1 +#define rnd_key(n) (kp - n * N_COLS) +#endif + +AES_RETURN aes_decrypt(const unsigned char *in, unsigned char *out, const aes_decrypt_ctx cx[1]) +{ uint_32t locals(b0, b1); +#if defined( dec_imvars ) + dec_imvars; /* declare variables for inv_mcol() if needed */ +#endif + const uint_32t *kp; + +#if defined( AES_ERR_CHK ) + if( cx->inf.b[0] != 10 * 16 && cx->inf.b[0] != 12 * 16 && cx->inf.b[0] != 14 * 16 ) + return EXIT_FAILURE; +#endif + + kp = cx->ks + (key_ofs ? (cx->inf.b[0] >> 2) : 0); + state_in(b0, in, kp); + +#if (DEC_UNROLL == FULL) + + kp = cx->ks + (key_ofs ? 0 : (cx->inf.b[0] >> 2)); + switch(cx->inf.b[0]) + { + case 14 * 16: + round(inv_rnd, b1, b0, rnd_key(-13)); + round(inv_rnd, b0, b1, rnd_key(-12)); + case 12 * 16: + round(inv_rnd, b1, b0, rnd_key(-11)); + round(inv_rnd, b0, b1, rnd_key(-10)); + case 10 * 16: + round(inv_rnd, b1, b0, rnd_key(-9)); + round(inv_rnd, b0, b1, rnd_key(-8)); + round(inv_rnd, b1, b0, rnd_key(-7)); + round(inv_rnd, b0, b1, rnd_key(-6)); + round(inv_rnd, b1, b0, rnd_key(-5)); + round(inv_rnd, b0, b1, rnd_key(-4)); + round(inv_rnd, b1, b0, rnd_key(-3)); + round(inv_rnd, b0, b1, rnd_key(-2)); + round(inv_rnd, b1, b0, rnd_key(-1)); + round(inv_lrnd, b0, b1, rnd_key( 0)); + } + +#else + +#if (DEC_UNROLL == PARTIAL) + { uint_32t rnd; + for(rnd = 0; rnd < (cx->inf.b[0] >> 5) - 1; ++rnd) + { + kp = rnd_key(1); + round(inv_rnd, b1, b0, kp); + kp = rnd_key(1); + round(inv_rnd, b0, b1, kp); + } + kp = rnd_key(1); + round(inv_rnd, b1, b0, kp); +#else + { uint_32t rnd; + for(rnd = 0; rnd < (cx->inf.b[0] >> 4) - 1; ++rnd) + { + kp = rnd_key(1); + round(inv_rnd, b1, b0, kp); + l_copy(b0, b1); + } +#endif + kp = rnd_key(1); + round(inv_lrnd, b0, b1, kp); + } +#endif + + state_out(out, b0); + +#if defined( AES_ERR_CHK ) + return EXIT_SUCCESS; +#endif +} + +#endif + +#if defined(__cplusplus) +} +#endif -- cgit v1.2.3