From 1ef05f24e28938c7a0608b4c6b369094d1dccaa6 Mon Sep 17 00:00:00 2001 From: Mounir IDRASSI Date: Wed, 9 Feb 2022 23:47:25 +0100 Subject: Windows: Reduce the size of installers by almost 50% by using LZMA compression instead of DEFLATE --- src/Common/lzma/LzmaDec.c | 1363 +++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 1363 insertions(+) create mode 100644 src/Common/lzma/LzmaDec.c (limited to 'src/Common/lzma/LzmaDec.c') diff --git a/src/Common/lzma/LzmaDec.c b/src/Common/lzma/LzmaDec.c new file mode 100644 index 00000000..d6742e5a --- /dev/null +++ b/src/Common/lzma/LzmaDec.c @@ -0,0 +1,1363 @@ +/* LzmaDec.c -- LZMA Decoder +2021-04-01 : Igor Pavlov : Public domain */ + +#include "Precomp.h" + +#include + +/* #include "CpuArch.h" */ +#include "LzmaDec.h" + +#define kNumTopBits 24 +#define kTopValue ((UInt32)1 << kNumTopBits) + +#define kNumBitModelTotalBits 11 +#define kBitModelTotal (1 << kNumBitModelTotalBits) + +#define RC_INIT_SIZE 5 + +#ifndef _LZMA_DEC_OPT + +#define kNumMoveBits 5 +#define NORMALIZE if (range < kTopValue) { range <<= 8; code = (code << 8) | (*buf++); } + +#define IF_BIT_0(p) ttt = *(p); NORMALIZE; bound = (range >> kNumBitModelTotalBits) * (UInt32)ttt; if (code < bound) +#define UPDATE_0(p) range = bound; *(p) = (CLzmaProb)(ttt + ((kBitModelTotal - ttt) >> kNumMoveBits)); +#define UPDATE_1(p) range -= bound; code -= bound; *(p) = (CLzmaProb)(ttt - (ttt >> kNumMoveBits)); +#define GET_BIT2(p, i, A0, A1) IF_BIT_0(p) \ + { UPDATE_0(p); i = (i + i); A0; } else \ + { UPDATE_1(p); i = (i + i) + 1; A1; } + +#define TREE_GET_BIT(probs, i) { GET_BIT2(probs + i, i, ;, ;); } + +#define REV_BIT(p, i, A0, A1) IF_BIT_0(p + i) \ + { UPDATE_0(p + i); A0; } else \ + { UPDATE_1(p + i); A1; } +#define REV_BIT_VAR( p, i, m) REV_BIT(p, i, i += m; m += m, m += m; i += m; ) +#define REV_BIT_CONST(p, i, m) REV_BIT(p, i, i += m; , i += m * 2; ) +#define REV_BIT_LAST( p, i, m) REV_BIT(p, i, i -= m , ; ) + +#define TREE_DECODE(probs, limit, i) \ + { i = 1; do { TREE_GET_BIT(probs, i); } while (i < limit); i -= limit; } + +/* #define _LZMA_SIZE_OPT */ + +#ifdef _LZMA_SIZE_OPT +#define TREE_6_DECODE(probs, i) TREE_DECODE(probs, (1 << 6), i) +#else +#define TREE_6_DECODE(probs, i) \ + { i = 1; \ + TREE_GET_BIT(probs, i); \ + TREE_GET_BIT(probs, i); \ + TREE_GET_BIT(probs, i); \ + TREE_GET_BIT(probs, i); \ + TREE_GET_BIT(probs, i); \ + TREE_GET_BIT(probs, i); \ + i -= 0x40; } +#endif + +#define NORMAL_LITER_DEC TREE_GET_BIT(prob, symbol) +#define MATCHED_LITER_DEC \ + matchByte += matchByte; \ + bit = offs; \ + offs &= matchByte; \ + probLit = prob + (offs + bit + symbol); \ + GET_BIT2(probLit, symbol, offs ^= bit; , ;) + +#endif // _LZMA_DEC_OPT + + +#define NORMALIZE_CHECK if (range < kTopValue) { if (buf >= bufLimit) return DUMMY_INPUT_EOF; range <<= 8; code = (code << 8) | (*buf++); } + +#define IF_BIT_0_CHECK(p) ttt = *(p); NORMALIZE_CHECK; bound = (range >> kNumBitModelTotalBits) * (UInt32)ttt; if (code < bound) +#define UPDATE_0_CHECK range = bound; +#define UPDATE_1_CHECK range -= bound; code -= bound; +#define GET_BIT2_CHECK(p, i, A0, A1) IF_BIT_0_CHECK(p) \ + { UPDATE_0_CHECK; i = (i + i); A0; } else \ + { UPDATE_1_CHECK; i = (i + i) + 1; A1; } +#define GET_BIT_CHECK(p, i) GET_BIT2_CHECK(p, i, ; , ;) +#define TREE_DECODE_CHECK(probs, limit, i) \ + { i = 1; do { GET_BIT_CHECK(probs + i, i) } while (i < limit); i -= limit; } + + +#define REV_BIT_CHECK(p, i, m) IF_BIT_0_CHECK(p + i) \ + { UPDATE_0_CHECK; i += m; m += m; } else \ + { UPDATE_1_CHECK; m += m; i += m; } + + +#define kNumPosBitsMax 4 +#define kNumPosStatesMax (1 << kNumPosBitsMax) + +#define kLenNumLowBits 3 +#define kLenNumLowSymbols (1 << kLenNumLowBits) +#define kLenNumHighBits 8 +#define kLenNumHighSymbols (1 << kLenNumHighBits) + +#define LenLow 0 +#define LenHigh (LenLow + 2 * (kNumPosStatesMax << kLenNumLowBits)) +#define kNumLenProbs (LenHigh + kLenNumHighSymbols) + +#define LenChoice LenLow +#define LenChoice2 (LenLow + (1 << kLenNumLowBits)) + +#define kNumStates 12 +#define kNumStates2 16 +#define kNumLitStates 7 + +#define kStartPosModelIndex 4 +#define kEndPosModelIndex 14 +#define kNumFullDistances (1 << (kEndPosModelIndex >> 1)) + +#define kNumPosSlotBits 6 +#define kNumLenToPosStates 4 + +#define kNumAlignBits 4 +#define kAlignTableSize (1 << kNumAlignBits) + +#define kMatchMinLen 2 +#define kMatchSpecLenStart (kMatchMinLen + kLenNumLowSymbols * 2 + kLenNumHighSymbols) + +#define kMatchSpecLen_Error_Data (1 << 9) +#define kMatchSpecLen_Error_Fail (kMatchSpecLen_Error_Data - 1) + +/* External ASM code needs same CLzmaProb array layout. So don't change it. */ + +/* (probs_1664) is faster and better for code size at some platforms */ +/* +#ifdef MY_CPU_X86_OR_AMD64 +*/ +#define kStartOffset 1664 +#define GET_PROBS p->probs_1664 +/* +#define GET_PROBS p->probs + kStartOffset +#else +#define kStartOffset 0 +#define GET_PROBS p->probs +#endif +*/ + +#define SpecPos (-kStartOffset) +#define IsRep0Long (SpecPos + kNumFullDistances) +#define RepLenCoder (IsRep0Long + (kNumStates2 << kNumPosBitsMax)) +#define LenCoder (RepLenCoder + kNumLenProbs) +#define IsMatch (LenCoder + kNumLenProbs) +#define Align (IsMatch + (kNumStates2 << kNumPosBitsMax)) +#define IsRep (Align + kAlignTableSize) +#define IsRepG0 (IsRep + kNumStates) +#define IsRepG1 (IsRepG0 + kNumStates) +#define IsRepG2 (IsRepG1 + kNumStates) +#define PosSlot (IsRepG2 + kNumStates) +#define Literal (PosSlot + (kNumLenToPosStates << kNumPosSlotBits)) +#define NUM_BASE_PROBS (Literal + kStartOffset) + +#if Align != 0 && kStartOffset != 0 + #error Stop_Compiling_Bad_LZMA_kAlign +#endif + +#if NUM_BASE_PROBS != 1984 + #error Stop_Compiling_Bad_LZMA_PROBS +#endif + + +#define LZMA_LIT_SIZE 0x300 + +#define LzmaProps_GetNumProbs(p) (NUM_BASE_PROBS + ((UInt32)LZMA_LIT_SIZE << ((p)->lc + (p)->lp))) + + +#define CALC_POS_STATE(processedPos, pbMask) (((processedPos) & (pbMask)) << 4) +#define COMBINED_PS_STATE (posState + state) +#define GET_LEN_STATE (posState) + +#define LZMA_DIC_MIN (1 << 12) + +/* +p->remainLen : shows status of LZMA decoder: + < kMatchSpecLenStart : the number of bytes to be copied with (p->rep0) offset + = kMatchSpecLenStart : the LZMA stream was finished with end mark + = kMatchSpecLenStart + 1 : need init range coder + = kMatchSpecLenStart + 2 : need init range coder and state + = kMatchSpecLen_Error_Fail : Internal Code Failure + = kMatchSpecLen_Error_Data + [0 ... 273] : LZMA Data Error +*/ + +/* ---------- LZMA_DECODE_REAL ---------- */ +/* +LzmaDec_DecodeReal_3() can be implemented in external ASM file. +3 - is the code compatibility version of that function for check at link time. +*/ + +#define LZMA_DECODE_REAL LzmaDec_DecodeReal_3 + +/* +LZMA_DECODE_REAL() +In: + RangeCoder is normalized + if (p->dicPos == limit) + { + LzmaDec_TryDummy() was called before to exclude LITERAL and MATCH-REP cases. + So first symbol can be only MATCH-NON-REP. And if that MATCH-NON-REP symbol + is not END_OF_PAYALOAD_MARKER, then the function doesn't write any byte to dictionary, + the function returns SZ_OK, and the caller can use (p->remainLen) and (p->reps[0]) later. + } + +Processing: + The first LZMA symbol will be decoded in any case. + All main checks for limits are at the end of main loop, + It decodes additional LZMA-symbols while (p->buf < bufLimit && dicPos < limit), + RangeCoder is still without last normalization when (p->buf < bufLimit) is being checked. + But if (p->buf < bufLimit), the caller provided at least (LZMA_REQUIRED_INPUT_MAX + 1) bytes for + next iteration before limit (bufLimit + LZMA_REQUIRED_INPUT_MAX), + that is enough for worst case LZMA symbol with one additional RangeCoder normalization for one bit. + So that function never reads bufLimit [LZMA_REQUIRED_INPUT_MAX] byte. + +Out: + RangeCoder is normalized + Result: + SZ_OK - OK + p->remainLen: + < kMatchSpecLenStart : the number of bytes to be copied with (p->reps[0]) offset + = kMatchSpecLenStart : the LZMA stream was finished with end mark + + SZ_ERROR_DATA - error, when the MATCH-Symbol refers out of dictionary + p->remainLen : undefined + p->reps[*] : undefined +*/ + + +#ifdef _LZMA_DEC_OPT + +int MY_FAST_CALL LZMA_DECODE_REAL(CLzmaDec *p, SizeT limit, const Byte *bufLimit); + +#else + +static +int MY_FAST_CALL LZMA_DECODE_REAL(CLzmaDec *p, SizeT limit, const Byte *bufLimit) +{ + CLzmaProb *probs = GET_PROBS; + unsigned state = (unsigned)p->state; + UInt32 rep0 = p->reps[0], rep1 = p->reps[1], rep2 = p->reps[2], rep3 = p->reps[3]; + unsigned pbMask = ((unsigned)1 << (p->prop.pb)) - 1; + unsigned lc = p->prop.lc; + unsigned lpMask = ((unsigned)0x100 << p->prop.lp) - ((unsigned)0x100 >> lc); + + Byte *dic = p->dic; + SizeT dicBufSize = p->dicBufSize; + SizeT dicPos = p->dicPos; + + UInt32 processedPos = p->processedPos; + UInt32 checkDicSize = p->checkDicSize; + unsigned len = 0; + + const Byte *buf = p->buf; + UInt32 range = p->range; + UInt32 code = p->code; + + do + { + CLzmaProb *prob; + UInt32 bound; + unsigned ttt; + unsigned posState = CALC_POS_STATE(processedPos, pbMask); + + prob = probs + IsMatch + COMBINED_PS_STATE; + IF_BIT_0(prob) + { + unsigned symbol; + UPDATE_0(prob); + prob = probs + Literal; + if (processedPos != 0 || checkDicSize != 0) + prob += (UInt32)3 * ((((processedPos << 8) + dic[(dicPos == 0 ? dicBufSize : dicPos) - 1]) & lpMask) << lc); + processedPos++; + + if (state < kNumLitStates) + { + state -= (state < 4) ? state : 3; + symbol = 1; + #ifdef _LZMA_SIZE_OPT + do { NORMAL_LITER_DEC } while (symbol < 0x100); + #else + NORMAL_LITER_DEC + NORMAL_LITER_DEC + NORMAL_LITER_DEC + NORMAL_LITER_DEC + NORMAL_LITER_DEC + NORMAL_LITER_DEC + NORMAL_LITER_DEC + NORMAL_LITER_DEC + #endif + } + else + { + unsigned matchByte = dic[dicPos - rep0 + (dicPos < rep0 ? dicBufSize : 0)]; + unsigned offs = 0x100; + state -= (state < 10) ? 3 : 6; + symbol = 1; + #ifdef _LZMA_SIZE_OPT + do + { + unsigned bit; + CLzmaProb *probLit; + MATCHED_LITER_DEC + } + while (symbol < 0x100); + #else + { + unsigned bit; + CLzmaProb *probLit; + MATCHED_LITER_DEC + MATCHED_LITER_DEC + MATCHED_LITER_DEC + MATCHED_LITER_DEC + MATCHED_LITER_DEC + MATCHED_LITER_DEC + MATCHED_LITER_DEC + MATCHED_LITER_DEC + } + #endif + } + + dic[dicPos++] = (Byte)symbol; + continue; + } + + { + UPDATE_1(prob); + prob = probs + IsRep + state; + IF_BIT_0(prob) + { + UPDATE_0(prob); + state += kNumStates; + prob = probs + LenCoder; + } + else + { + UPDATE_1(prob); + prob = probs + IsRepG0 + state; + IF_BIT_0(prob) + { + UPDATE_0(prob); + prob = probs + IsRep0Long + COMBINED_PS_STATE; + IF_BIT_0(prob) + { + UPDATE_0(prob); + + // that case was checked before with kBadRepCode + // if (checkDicSize == 0 && processedPos == 0) { len = kMatchSpecLen_Error_Data + 1; break; } + // The caller doesn't allow (dicPos == limit) case here + // so we don't need the following check: + // if (dicPos == limit) { state = state < kNumLitStates ? 9 : 11; len = 1; break; } + + dic[dicPos] = dic[dicPos - rep0 + (dicPos < rep0 ? dicBufSize : 0)]; + dicPos++; + processedPos++; + state = state < kNumLitStates ? 9 : 11; + continue; + } + UPDATE_1(prob); + } + else + { + UInt32 distance; + UPDATE_1(prob); + prob = probs + IsRepG1 + state; + IF_BIT_0(prob) + { + UPDATE_0(prob); + distance = rep1; + } + else + { + UPDATE_1(prob); + prob = probs + IsRepG2 + state; + IF_BIT_0(prob) + { + UPDATE_0(prob); + distance = rep2; + } + else + { + UPDATE_1(prob); + distance = rep3; + rep3 = rep2; + } + rep2 = rep1; + } + rep1 = rep0; + rep0 = distance; + } + state = state < kNumLitStates ? 8 : 11; + prob = probs + RepLenCoder; + } + + #ifdef _LZMA_SIZE_OPT + { + unsigned lim, offset; + CLzmaProb *probLen = prob + LenChoice; + IF_BIT_0(probLen) + { + UPDATE_0(probLen); + probLen = prob + LenLow + GET_LEN_STATE; + offset = 0; + lim = (1 << kLenNumLowBits); + } + else + { + UPDATE_1(probLen); + probLen = prob + LenChoice2; + IF_BIT_0(probLen) + { + UPDATE_0(probLen); + probLen = prob + LenLow + GET_LEN_STATE + (1 << kLenNumLowBits); + offset = kLenNumLowSymbols; + lim = (1 << kLenNumLowBits); + } + else + { + UPDATE_1(probLen); + probLen = prob + LenHigh; + offset = kLenNumLowSymbols * 2; + lim = (1 << kLenNumHighBits); + } + } + TREE_DECODE(probLen, lim, len); + len += offset; + } + #else + { + CLzmaProb *probLen = prob + LenChoice; + IF_BIT_0(probLen) + { + UPDATE_0(probLen); + probLen = prob + LenLow + GET_LEN_STATE; + len = 1; + TREE_GET_BIT(probLen, len); + TREE_GET_BIT(probLen, len); + TREE_GET_BIT(probLen, len); + len -= 8; + } + else + { + UPDATE_1(probLen); + probLen = prob + LenChoice2; + IF_BIT_0(probLen) + { + UPDATE_0(probLen); + probLen = prob + LenLow + GET_LEN_STATE + (1 << kLenNumLowBits); + len = 1; + TREE_GET_BIT(probLen, len); + TREE_GET_BIT(probLen, len); + TREE_GET_BIT(probLen, len); + } + else + { + UPDATE_1(probLen); + probLen = prob + LenHigh; + TREE_DECODE(probLen, (1 << kLenNumHighBits), len); + len += kLenNumLowSymbols * 2; + } + } + } + #endif + + if (state >= kNumStates) + { + UInt32 distance; + prob = probs + PosSlot + + ((len < kNumLenToPosStates ? len : kNumLenToPosStates - 1) << kNumPosSlotBits); + TREE_6_DECODE(prob, distance); + if (distance >= kStartPosModelIndex) + { + unsigned posSlot = (unsigned)distance; + unsigned numDirectBits = (unsigned)(((distance >> 1) - 1)); + distance = (2 | (distance & 1)); + if (posSlot < kEndPosModelIndex) + { + distance <<= numDirectBits; + prob = probs + SpecPos; + { + UInt32 m = 1; + distance++; + do + { + REV_BIT_VAR(prob, distance, m); + } + while (--numDirectBits); + distance -= m; + } + } + else + { + numDirectBits -= kNumAlignBits; + do + { + NORMALIZE + range >>= 1; + + { + UInt32 t; + code -= range; + t = (0 - ((UInt32)code >> 31)); /* (UInt32)((Int32)code >> 31) */ + distance = (distance << 1) + (t + 1); + code += range & t; + } + /* + distance <<= 1; + if (code >= range) + { + code -= range; + distance |= 1; + } + */ + } + while (--numDirectBits); + prob = probs + Align; + distance <<= kNumAlignBits; + { + unsigned i = 1; + REV_BIT_CONST(prob, i, 1); + REV_BIT_CONST(prob, i, 2); + REV_BIT_CONST(prob, i, 4); + REV_BIT_LAST (prob, i, 8); + distance |= i; + } + if (distance == (UInt32)0xFFFFFFFF) + { + len = kMatchSpecLenStart; + state -= kNumStates; + break; + } + } + } + + rep3 = rep2; + rep2 = rep1; + rep1 = rep0; + rep0 = distance + 1; + state = (state < kNumStates + kNumLitStates) ? kNumLitStates : kNumLitStates + 3; + if (distance >= (checkDicSize == 0 ? processedPos: checkDicSize)) + { + len += kMatchSpecLen_Error_Data + kMatchMinLen; + // len = kMatchSpecLen_Error_Data; + // len += kMatchMinLen; + break; + } + } + + len += kMatchMinLen; + + { + SizeT rem; + unsigned curLen; + SizeT pos; + + if ((rem = limit - dicPos) == 0) + { + /* + We stop decoding and return SZ_OK, and we can resume decoding later. + Any error conditions can be tested later in caller code. + For more strict mode we can stop decoding with error + // len += kMatchSpecLen_Error_Data; + */ + break; + } + + curLen = ((rem < len) ? (unsigned)rem : len); + pos = dicPos - rep0 + (dicPos < rep0 ? dicBufSize : 0); + + processedPos += (UInt32)curLen; + + len -= curLen; + if (curLen <= dicBufSize - pos) + { + Byte *dest = dic + dicPos; + ptrdiff_t src = (ptrdiff_t)pos - (ptrdiff_t)dicPos; + const Byte *lim = dest + curLen; + dicPos += (SizeT)curLen; + do + *(dest) = (Byte)*(dest + src); + while (++dest != lim); + } + else + { + do + { + dic[dicPos++] = dic[pos]; + if (++pos == dicBufSize) + pos = 0; + } + while (--curLen != 0); + } + } + } + } + while (dicPos < limit && buf < bufLimit); + + NORMALIZE; + + p->buf = buf; + p->range = range; + p->code = code; + p->remainLen = (UInt32)len; // & (kMatchSpecLen_Error_Data - 1); // we can write real length for error matches too. + p->dicPos = dicPos; + p->processedPos = processedPos; + p->reps[0] = rep0; + p->reps[1] = rep1; + p->reps[2] = rep2; + p->reps[3] = rep3; + p->state = (UInt32)state; + if (len >= kMatchSpecLen_Error_Data) + return SZ_ERROR_DATA; + return SZ_OK; +} +#endif + + + +static void MY_FAST_CALL LzmaDec_WriteRem(CLzmaDec *p, SizeT limit) +{ + unsigned len = (unsigned)p->remainLen; + if (len == 0 /* || len >= kMatchSpecLenStart */) + return; + { + SizeT dicPos = p->dicPos; + Byte *dic; + SizeT dicBufSize; + SizeT rep0; /* we use SizeT to avoid the BUG of VC14 for AMD64 */ + { + SizeT rem = limit - dicPos; + if (rem < len) + { + len = (unsigned)(rem); + if (len == 0) + return; + } + } + + if (p->checkDicSize == 0 && p->prop.dicSize - p->processedPos <= len) + p->checkDicSize = p->prop.dicSize; + + p->processedPos += (UInt32)len; + p->remainLen -= (UInt32)len; + dic = p->dic; + rep0 = p->reps[0]; + dicBufSize = p->dicBufSize; + do + { + dic[dicPos] = dic[dicPos - rep0 + (dicPos < rep0 ? dicBufSize : 0)]; + dicPos++; + } + while (--len); + p->dicPos = dicPos; + } +} + + +/* +At staring of new stream we have one of the following symbols: + - Literal - is allowed + - Non-Rep-Match - is allowed only if it's end marker symbol + - Rep-Match - is not allowed +We use early check of (RangeCoder:Code) over kBadRepCode to simplify main decoding code +*/ + +#define kRange0 0xFFFFFFFF +#define kBound0 ((kRange0 >> kNumBitModelTotalBits) << (kNumBitModelTotalBits - 1)) +#define kBadRepCode (kBound0 + (((kRange0 - kBound0) >> kNumBitModelTotalBits) << (kNumBitModelTotalBits - 1))) +#if kBadRepCode != (0xC0000000 - 0x400) + #error Stop_Compiling_Bad_LZMA_Check +#endif + + +/* +LzmaDec_DecodeReal2(): + It calls LZMA_DECODE_REAL() and it adjusts limit according (p->checkDicSize). + +We correct (p->checkDicSize) after LZMA_DECODE_REAL() and in LzmaDec_WriteRem(), +and we support the following state of (p->checkDicSize): + if (total_processed < p->prop.dicSize) then + { + (total_processed == p->processedPos) + (p->checkDicSize == 0) + } + else + (p->checkDicSize == p->prop.dicSize) +*/ + +static int MY_FAST_CALL LzmaDec_DecodeReal2(CLzmaDec *p, SizeT limit, const Byte *bufLimit) +{ + if (p->checkDicSize == 0) + { + UInt32 rem = p->prop.dicSize - p->processedPos; + if (limit - p->dicPos > rem) + limit = p->dicPos + rem; + } + { + int res = LZMA_DECODE_REAL(p, limit, bufLimit); + if (p->checkDicSize == 0 && p->processedPos >= p->prop.dicSize) + p->checkDicSize = p->prop.dicSize; + return res; + } +} + + + +typedef enum +{ + DUMMY_INPUT_EOF, /* need more input data */ + DUMMY_LIT, + DUMMY_MATCH, + DUMMY_REP +} ELzmaDummy; + + +#define IS_DUMMY_END_MARKER_POSSIBLE(dummyRes) ((dummyRes) == DUMMY_MATCH) + +static ELzmaDummy LzmaDec_TryDummy(const CLzmaDec *p, const Byte *buf, const Byte **bufOut) +{ + UInt32 range = p->range; + UInt32 code = p->code; + const Byte *bufLimit = *bufOut; + const CLzmaProb *probs = GET_PROBS; + unsigned state = (unsigned)p->state; + ELzmaDummy res; + + for (;;) + { + const CLzmaProb *prob; + UInt32 bound; + unsigned ttt; + unsigned posState = CALC_POS_STATE(p->processedPos, ((unsigned)1 << p->prop.pb) - 1); + + prob = probs + IsMatch + COMBINED_PS_STATE; + IF_BIT_0_CHECK(prob) + { + UPDATE_0_CHECK + + prob = probs + Literal; + if (p->checkDicSize != 0 || p->processedPos != 0) + prob += ((UInt32)LZMA_LIT_SIZE * + ((((p->processedPos) & (((unsigned)1 << (p->prop.lp)) - 1)) << p->prop.lc) + + ((unsigned)p->dic[(p->dicPos == 0 ? p->dicBufSize : p->dicPos) - 1] >> (8 - p->prop.lc)))); + + if (state < kNumLitStates) + { + unsigned symbol = 1; + do { GET_BIT_CHECK(prob + symbol, symbol) } while (symbol < 0x100); + } + else + { + unsigned matchByte = p->dic[p->dicPos - p->reps[0] + + (p->dicPos < p->reps[0] ? p->dicBufSize : 0)]; + unsigned offs = 0x100; + unsigned symbol = 1; + do + { + unsigned bit; + const CLzmaProb *probLit; + matchByte += matchByte; + bit = offs; + offs &= matchByte; + probLit = prob + (offs + bit + symbol); + GET_BIT2_CHECK(probLit, symbol, offs ^= bit; , ; ) + } + while (symbol < 0x100); + } + res = DUMMY_LIT; + } + else + { + unsigned len; + UPDATE_1_CHECK; + + prob = probs + IsRep + state; + IF_BIT_0_CHECK(prob) + { + UPDATE_0_CHECK; + state = 0; + prob = probs + LenCoder; + res = DUMMY_MATCH; + } + else + { + UPDATE_1_CHECK; + res = DUMMY_REP; + prob = probs + IsRepG0 + state; + IF_BIT_0_CHECK(prob) + { + UPDATE_0_CHECK; + prob = probs + IsRep0Long + COMBINED_PS_STATE; + IF_BIT_0_CHECK(prob) + { + UPDATE_0_CHECK; + break; + } + else + { + UPDATE_1_CHECK; + } + } + else + { + UPDATE_1_CHECK; + prob = probs + IsRepG1 + state; + IF_BIT_0_CHECK(prob) + { + UPDATE_0_CHECK; + } + else + { + UPDATE_1_CHECK; + prob = probs + IsRepG2 + state; + IF_BIT_0_CHECK(prob) + { + UPDATE_0_CHECK; + } + else + { + UPDATE_1_CHECK; + } + } + } + state = kNumStates; + prob = probs + RepLenCoder; + } + { + unsigned limit, offset; + const CLzmaProb *probLen = prob + LenChoice; + IF_BIT_0_CHECK(probLen) + { + UPDATE_0_CHECK; + probLen = prob + LenLow + GET_LEN_STATE; + offset = 0; + limit = 1 << kLenNumLowBits; + } + else + { + UPDATE_1_CHECK; + probLen = prob + LenChoice2; + IF_BIT_0_CHECK(probLen) + { + UPDATE_0_CHECK; + probLen = prob + LenLow + GET_LEN_STATE + (1 << kLenNumLowBits); + offset = kLenNumLowSymbols; + limit = 1 << kLenNumLowBits; + } + else + { + UPDATE_1_CHECK; + probLen = prob + LenHigh; + offset = kLenNumLowSymbols * 2; + limit = 1 << kLenNumHighBits; + } + } + TREE_DECODE_CHECK(probLen, limit, len); + len += offset; + } + + if (state < 4) + { + unsigned posSlot; + prob = probs + PosSlot + + ((len < kNumLenToPosStates - 1 ? len : kNumLenToPosStates - 1) << + kNumPosSlotBits); + TREE_DECODE_CHECK(prob, 1 << kNumPosSlotBits, posSlot); + if (posSlot >= kStartPosModelIndex) + { + unsigned numDirectBits = ((posSlot >> 1) - 1); + + if (posSlot < kEndPosModelIndex) + { + prob = probs + SpecPos + ((2 | (posSlot & 1)) << numDirectBits); + } + else + { + numDirectBits -= kNumAlignBits; + do + { + NORMALIZE_CHECK + range >>= 1; + code -= range & (((code - range) >> 31) - 1); + /* if (code >= range) code -= range; */ + } + while (--numDirectBits); + prob = probs + Align; + numDirectBits = kNumAlignBits; + } + { + unsigned i = 1; + unsigned m = 1; + do + { + REV_BIT_CHECK(prob, i, m); + } + while (--numDirectBits); + } + } + } + } + break; + } + NORMALIZE_CHECK; + + *bufOut = buf; + return res; +} + +void LzmaDec_InitDicAndState(CLzmaDec *p, BoolInt initDic, BoolInt initState); +void LzmaDec_InitDicAndState(CLzmaDec *p, BoolInt initDic, BoolInt initState) +{ + p->remainLen = kMatchSpecLenStart + 1; + p->tempBufSize = 0; + + if (initDic) + { + p->processedPos = 0; + p->checkDicSize = 0; + p->remainLen = kMatchSpecLenStart + 2; + } + if (initState) + p->remainLen = kMatchSpecLenStart + 2; +} + +void LzmaDec_Init(CLzmaDec *p) +{ + p->dicPos = 0; + LzmaDec_InitDicAndState(p, True, True); +} + + +/* +LZMA supports optional end_marker. +So the decoder can lookahead for one additional LZMA-Symbol to check end_marker. +That additional LZMA-Symbol can require up to LZMA_REQUIRED_INPUT_MAX bytes in input stream. +When the decoder reaches dicLimit, it looks (finishMode) parameter: + if (finishMode == LZMA_FINISH_ANY), the decoder doesn't lookahead + if (finishMode != LZMA_FINISH_ANY), the decoder lookahead, if end_marker is possible for current position + +When the decoder lookahead, and the lookahead symbol is not end_marker, we have two ways: + 1) Strict mode (default) : the decoder returns SZ_ERROR_DATA. + 2) The relaxed mode (alternative mode) : we could return SZ_OK, and the caller + must check (status) value. The caller can show the error, + if the end of stream is expected, and the (status) is noit + LZMA_STATUS_FINISHED_WITH_MARK or LZMA_STATUS_MAYBE_FINISHED_WITHOUT_MARK. +*/ + + +#define RETURN__NOT_FINISHED__FOR_FINISH \ + *status = LZMA_STATUS_NOT_FINISHED; \ + return SZ_ERROR_DATA; // for strict mode + // return SZ_OK; // for relaxed mode + + +SRes LzmaDec_DecodeToDic(CLzmaDec *p, SizeT dicLimit, const Byte *src, SizeT *srcLen, + ELzmaFinishMode finishMode, ELzmaStatus *status) +{ + SizeT inSize = *srcLen; + (*srcLen) = 0; + *status = LZMA_STATUS_NOT_SPECIFIED; + + if (p->remainLen > kMatchSpecLenStart) + { + if (p->remainLen > kMatchSpecLenStart + 2) + return p->remainLen == kMatchSpecLen_Error_Fail ? SZ_ERROR_FAIL : SZ_ERROR_DATA; + + for (; inSize > 0 && p->tempBufSize < RC_INIT_SIZE; (*srcLen)++, inSize--) + p->tempBuf[p->tempBufSize++] = *src++; + if (p->tempBufSize != 0 && p->tempBuf[0] != 0) + return SZ_ERROR_DATA; + if (p->tempBufSize < RC_INIT_SIZE) + { + *status = LZMA_STATUS_NEEDS_MORE_INPUT; + return SZ_OK; + } + p->code = + ((UInt32)p->tempBuf[1] << 24) + | ((UInt32)p->tempBuf[2] << 16) + | ((UInt32)p->tempBuf[3] << 8) + | ((UInt32)p->tempBuf[4]); + + if (p->checkDicSize == 0 + && p->processedPos == 0 + && p->code >= kBadRepCode) + return SZ_ERROR_DATA; + + p->range = 0xFFFFFFFF; + p->tempBufSize = 0; + + if (p->remainLen > kMatchSpecLenStart + 1) + { + SizeT numProbs = LzmaProps_GetNumProbs(&p->prop); + SizeT i; + CLzmaProb *probs = p->probs; + for (i = 0; i < numProbs; i++) + probs[i] = kBitModelTotal >> 1; + p->reps[0] = p->reps[1] = p->reps[2] = p->reps[3] = 1; + p->state = 0; + } + + p->remainLen = 0; + } + + for (;;) + { + if (p->remainLen == kMatchSpecLenStart) + { + if (p->code != 0) + return SZ_ERROR_DATA; + *status = LZMA_STATUS_FINISHED_WITH_MARK; + return SZ_OK; + } + + LzmaDec_WriteRem(p, dicLimit); + + { + // (p->remainLen == 0 || p->dicPos == dicLimit) + + int checkEndMarkNow = 0; + + if (p->dicPos >= dicLimit) + { + if (p->remainLen == 0 && p->code == 0) + { + *status = LZMA_STATUS_MAYBE_FINISHED_WITHOUT_MARK; + return SZ_OK; + } + if (finishMode == LZMA_FINISH_ANY) + { + *status = LZMA_STATUS_NOT_FINISHED; + return SZ_OK; + } + if (p->remainLen != 0) + { + RETURN__NOT_FINISHED__FOR_FINISH; + } + checkEndMarkNow = 1; + } + + // (p->remainLen == 0) + + if (p->tempBufSize == 0) + { + const Byte *bufLimit; + int dummyProcessed = -1; + + if (inSize < LZMA_REQUIRED_INPUT_MAX || checkEndMarkNow) + { + const Byte *bufOut = src + inSize; + + ELzmaDummy dummyRes = LzmaDec_TryDummy(p, src, &bufOut); + + if (dummyRes == DUMMY_INPUT_EOF) + { + size_t i; + if (inSize >= LZMA_REQUIRED_INPUT_MAX) + break; + (*srcLen) += inSize; + p->tempBufSize = (unsigned)inSize; + for (i = 0; i < inSize; i++) + p->tempBuf[i] = src[i]; + *status = LZMA_STATUS_NEEDS_MORE_INPUT; + return SZ_OK; + } + + dummyProcessed = (int)(bufOut - src); + if ((unsigned)dummyProcessed > LZMA_REQUIRED_INPUT_MAX) + break; + + if (checkEndMarkNow && !IS_DUMMY_END_MARKER_POSSIBLE(dummyRes)) + { + unsigned i; + (*srcLen) += (unsigned)dummyProcessed; + p->tempBufSize = (unsigned)dummyProcessed; + for (i = 0; i < (unsigned)dummyProcessed; i++) + p->tempBuf[i] = src[i]; + // p->remainLen = kMatchSpecLen_Error_Data; + RETURN__NOT_FINISHED__FOR_FINISH; + } + + bufLimit = src; + // we will decode only one iteration + } + else + bufLimit = src + inSize - LZMA_REQUIRED_INPUT_MAX; + + p->buf = src; + + { + int res = LzmaDec_DecodeReal2(p, dicLimit, bufLimit); + + SizeT processed = (SizeT)(p->buf - src); + + if (dummyProcessed < 0) + { + if (processed > inSize) + break; + } + else if ((unsigned)dummyProcessed != processed) + break; + + src += processed; + inSize -= processed; + (*srcLen) += processed; + + if (res != SZ_OK) + { + p->remainLen = kMatchSpecLen_Error_Data; + return SZ_ERROR_DATA; + } + } + continue; + } + + { + // we have some data in (p->tempBuf) + // in strict mode: tempBufSize is not enough for one Symbol decoding. + // in relaxed mode: tempBufSize not larger than required for one Symbol decoding. + + unsigned rem = p->tempBufSize; + unsigned ahead = 0; + int dummyProcessed = -1; + + while (rem < LZMA_REQUIRED_INPUT_MAX && ahead < inSize) + p->tempBuf[rem++] = src[ahead++]; + + // ahead - the size of new data copied from (src) to (p->tempBuf) + // rem - the size of temp buffer including new data from (src) + + if (rem < LZMA_REQUIRED_INPUT_MAX || checkEndMarkNow) + { + const Byte *bufOut = p->tempBuf + rem; + + ELzmaDummy dummyRes = LzmaDec_TryDummy(p, p->tempBuf, &bufOut); + + if (dummyRes == DUMMY_INPUT_EOF) + { + if (rem >= LZMA_REQUIRED_INPUT_MAX) + break; + p->tempBufSize = rem; + (*srcLen) += (SizeT)ahead; + *status = LZMA_STATUS_NEEDS_MORE_INPUT; + return SZ_OK; + } + + dummyProcessed = (int)(bufOut - p->tempBuf); + + if ((unsigned)dummyProcessed < p->tempBufSize) + break; + + if (checkEndMarkNow && !IS_DUMMY_END_MARKER_POSSIBLE(dummyRes)) + { + (*srcLen) += (unsigned)dummyProcessed - p->tempBufSize; + p->tempBufSize = (unsigned)dummyProcessed; + // p->remainLen = kMatchSpecLen_Error_Data; + RETURN__NOT_FINISHED__FOR_FINISH; + } + } + + p->buf = p->tempBuf; + + { + // we decode one symbol from (p->tempBuf) here, so the (bufLimit) is equal to (p->buf) + int res = LzmaDec_DecodeReal2(p, dicLimit, p->buf); + + SizeT processed = (SizeT)(p->buf - p->tempBuf); + rem = p->tempBufSize; + + if (dummyProcessed < 0) + { + if (processed > LZMA_REQUIRED_INPUT_MAX) + break; + if (processed < rem) + break; + } + else if ((unsigned)dummyProcessed != processed) + break; + + processed -= rem; + + src += processed; + inSize -= processed; + (*srcLen) += processed; + p->tempBufSize = 0; + + if (res != SZ_OK) + { + p->remainLen = kMatchSpecLen_Error_Data; + return SZ_ERROR_DATA; + } + } + } + } + } + + /* Some unexpected error: internal error of code, memory corruption or hardware failure */ + p->remainLen = kMatchSpecLen_Error_Fail; + return SZ_ERROR_FAIL; +} + + + +SRes LzmaDec_DecodeToBuf(CLzmaDec *p, Byte *dest, SizeT *destLen, const Byte *src, SizeT *srcLen, ELzmaFinishMode finishMode, ELzmaStatus *status) +{ + SizeT outSize = *destLen; + SizeT inSize = *srcLen; + *srcLen = *destLen = 0; + for (;;) + { + SizeT inSizeCur = inSize, outSizeCur, dicPos; + ELzmaFinishMode curFinishMode; + SRes res; + if (p->dicPos == p->dicBufSize) + p->dicPos = 0; + dicPos = p->dicPos; + if (outSize > p->dicBufSize - dicPos) + { + outSizeCur = p->dicBufSize; + curFinishMode = LZMA_FINISH_ANY; + } + else + { + outSizeCur = dicPos + outSize; + curFinishMode = finishMode; + } + + res = LzmaDec_DecodeToDic(p, outSizeCur, src, &inSizeCur, curFinishMode, status); + src += inSizeCur; + inSize -= inSizeCur; + *srcLen += inSizeCur; + outSizeCur = p->dicPos - dicPos; + memcpy(dest, p->dic + dicPos, outSizeCur); + dest += outSizeCur; + outSize -= outSizeCur; + *destLen += outSizeCur; + if (res != 0) + return res; + if (outSizeCur == 0 || outSize == 0) + return SZ_OK; + } +} + +void LzmaDec_FreeProbs(CLzmaDec *p, ISzAllocPtr alloc) +{ + ISzAlloc_Free(alloc, p->probs); + p->probs = NULL; +} + +static void LzmaDec_FreeDict(CLzmaDec *p, ISzAllocPtr alloc) +{ + ISzAlloc_Free(alloc, p->dic); + p->dic = NULL; +} + +void LzmaDec_Free(CLzmaDec *p, ISzAllocPtr alloc) +{ + LzmaDec_FreeProbs(p, alloc); + LzmaDec_FreeDict(p, alloc); +} + +SRes LzmaProps_Decode(CLzmaProps *p, const Byte *data, unsigned size) +{ + UInt32 dicSize; + Byte d; + + if (size < LZMA_PROPS_SIZE) + return SZ_ERROR_UNSUPPORTED; + else + dicSize = data[1] | ((UInt32)data[2] << 8) | ((UInt32)data[3] << 16) | ((UInt32)data[4] << 24); + + if (dicSize < LZMA_DIC_MIN) + dicSize = LZMA_DIC_MIN; + p->dicSize = dicSize; + + d = data[0]; + if (d >= (9 * 5 * 5)) + return SZ_ERROR_UNSUPPORTED; + + p->lc = (Byte)(d % 9); + d /= 9; + p->pb = (Byte)(d / 5); + p->lp = (Byte)(d % 5); + + return SZ_OK; +} + +static SRes LzmaDec_AllocateProbs2(CLzmaDec *p, const CLzmaProps *propNew, ISzAllocPtr alloc) +{ + UInt32 numProbs = LzmaProps_GetNumProbs(propNew); + if (!p->probs || numProbs != p->numProbs) + { + LzmaDec_FreeProbs(p, alloc); + p->probs = (CLzmaProb *)ISzAlloc_Alloc(alloc, numProbs * sizeof(CLzmaProb)); + if (!p->probs) + return SZ_ERROR_MEM; + p->probs_1664 = p->probs + 1664; + p->numProbs = numProbs; + } + return SZ_OK; +} + +SRes LzmaDec_AllocateProbs(CLzmaDec *p, const Byte *props, unsigned propsSize, ISzAllocPtr alloc) +{ + CLzmaProps propNew; + RINOK(LzmaProps_Decode(&propNew, props, propsSize)); + RINOK(LzmaDec_AllocateProbs2(p, &propNew, alloc)); + p->prop = propNew; + return SZ_OK; +} + +SRes LzmaDec_Allocate(CLzmaDec *p, const Byte *props, unsigned propsSize, ISzAllocPtr alloc) +{ + CLzmaProps propNew; + SizeT dicBufSize; + RINOK(LzmaProps_Decode(&propNew, props, propsSize)); + RINOK(LzmaDec_AllocateProbs2(p, &propNew, alloc)); + + { + UInt32 dictSize = propNew.dicSize; + SizeT mask = ((UInt32)1 << 12) - 1; + if (dictSize >= ((UInt32)1 << 30)) mask = ((UInt32)1 << 22) - 1; + else if (dictSize >= ((UInt32)1 << 22)) mask = ((UInt32)1 << 20) - 1;; + dicBufSize = ((SizeT)dictSize + mask) & ~mask; + if (dicBufSize < dictSize) + dicBufSize = dictSize; + } + + if (!p->dic || dicBufSize != p->dicBufSize) + { + LzmaDec_FreeDict(p, alloc); + p->dic = (Byte *)ISzAlloc_Alloc(alloc, dicBufSize); + if (!p->dic) + { + LzmaDec_FreeProbs(p, alloc); + return SZ_ERROR_MEM; + } + } + p->dicBufSize = dicBufSize; + p->prop = propNew; + return SZ_OK; +} + +SRes LzmaDecode(Byte *dest, SizeT *destLen, const Byte *src, SizeT *srcLen, + const Byte *propData, unsigned propSize, ELzmaFinishMode finishMode, + ELzmaStatus *status, ISzAllocPtr alloc) +{ + CLzmaDec p; + SRes res; + SizeT outSize = *destLen, inSize = *srcLen; + *destLen = *srcLen = 0; + *status = LZMA_STATUS_NOT_SPECIFIED; + if (inSize < RC_INIT_SIZE) + return SZ_ERROR_INPUT_EOF; + LzmaDec_Construct(&p); + RINOK(LzmaDec_AllocateProbs(&p, propData, propSize, alloc)); + p.dic = dest; + p.dicBufSize = outSize; + LzmaDec_Init(&p); + *srcLen = inSize; + res = LzmaDec_DecodeToDic(&p, outSize, src, srcLen, finishMode, status); + *destLen = p.dicPos; + if (res == SZ_OK && *status == LZMA_STATUS_NEEDS_MORE_INPUT) + res = SZ_ERROR_INPUT_EOF; + LzmaDec_FreeProbs(&p, alloc); + return res; +} -- cgit v1.2.3