From 4cf9db9f9556ab1127f5bce91db6c02028637b57 Mon Sep 17 00:00:00 2001 From: Mounir IDRASSI Date: Sun, 14 Aug 2016 02:20:42 +0200 Subject: Windows: Add XZip library files (http://www.codeproject.com/Articles/4135/XZip-and-XUnzip-Add-zip-and-or-unzip-to-your-app-w) --- src/Common/XZip.cpp | 3209 +++++++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 3209 insertions(+) create mode 100644 src/Common/XZip.cpp (limited to 'src/Common/XZip.cpp') diff --git a/src/Common/XZip.cpp b/src/Common/XZip.cpp new file mode 100644 index 00000000..1d98d34e --- /dev/null +++ b/src/Common/XZip.cpp @@ -0,0 +1,3209 @@ +// XZip.cpp Version 1.3 +// +// Authors: Mark Adler et al. (see below) +// +// Modified by: Lucian Wischik +// lu@wischik.com +// +// Version 1.0 - Turned C files into just a single CPP file +// - Made them compile cleanly as C++ files +// - Gave them simpler APIs +// - Added the ability to zip/unzip directly in memory without +// any intermediate files +// +// Modified by: Hans Dietrich +// hdietrich@gmail.com +// +// Version 1.3: - Fixed UTC problem +// +// Version 1.2: - Many bug fixes. See CodeProject article for list. +// +// Version 1.1: - Added Unicode support to CreateZip() and ZipAdd() +// - Changed file names to avoid conflicts with Lucian's files +// +/////////////////////////////////////////////////////////////////////////////// +// +// Lucian Wischik's comments: +// -------------------------- +// THIS FILE is almost entirely based upon code by Info-ZIP. +// It has been modified by Lucian Wischik. +// The original code may be found at http://www.info-zip.org +// The original copyright text follows. +// +/////////////////////////////////////////////////////////////////////////////// +// +// Original authors' comments: +// --------------------------- +// This is version 2002-Feb-16 of the Info-ZIP copyright and license. The +// definitive version of this document should be available at +// ftp://ftp.info-zip.org/pub/infozip/license.html indefinitely. +// +// Copyright (c) 1990-2002 Info-ZIP. All rights reserved. +// +// For the purposes of this copyright and license, "Info-ZIP" is defined as +// the following set of individuals: +// +// Mark Adler, John Bush, Karl Davis, Harald Denker, Jean-Michel Dubois, +// Jean-loup Gailly, Hunter Goatley, Ian Gorman, Chris Herborth, Dirk Haase, +// Greg Hartwig, Robert Heath, Jonathan Hudson, Paul Kienitz, +// David Kirschbaum, Johnny Lee, Onno van der Linden, Igor Mandrichenko, +// Steve P. Miller, Sergio Monesi, Keith Owens, George Petrov, Greg Roelofs, +// Kai Uwe Rommel, Steve Salisbury, Dave Smith, Christian Spieler, +// Antoine Verheijen, Paul von Behren, Rich Wales, Mike White +// +// This software is provided "as is", without warranty of any kind, express +// or implied. In no event shall Info-ZIP or its contributors be held liable +// for any direct, indirect, incidental, special or consequential damages +// arising out of the use of or inability to use this software. +// +// Permission is granted to anyone to use this software for any purpose, +// including commercial applications, and to alter it and redistribute it +// freely, subject to the following restrictions: +// +// 1. Redistributions of source code must retain the above copyright notice, +// definition, disclaimer, and this list of conditions. +// +// 2. Redistributions in binary form (compiled executables) must reproduce +// the above copyright notice, definition, disclaimer, and this list of +// conditions in documentation and/or other materials provided with the +// distribution. The sole exception to this condition is redistribution +// of a standard UnZipSFX binary as part of a self-extracting archive; +// that is permitted without inclusion of this license, as long as the +// normal UnZipSFX banner has not been removed from the binary or disabled. +// +// 3. Altered versions--including, but not limited to, ports to new +// operating systems, existing ports with new graphical interfaces, and +// dynamic, shared, or static library versions--must be plainly marked +// as such and must not be misrepresented as being the original source. +// Such altered versions also must not be misrepresented as being +// Info-ZIP releases--including, but not limited to, labeling of the +// altered versions with the names "Info-ZIP" (or any variation thereof, +// including, but not limited to, different capitalizations), +// "Pocket UnZip", "WiZ" or "MacZip" without the explicit permission of +// Info-ZIP. Such altered versions are further prohibited from +// misrepresentative use of the Zip-Bugs or Info-ZIP e-mail addresses or +// of the Info-ZIP URL(s). +// +// 4. Info-ZIP retains the right to use the names "Info-ZIP", "Zip", "UnZip", +// "UnZipSFX", "WiZ", "Pocket UnZip", "Pocket Zip", and "MacZip" for its +// own source and binary releases. +// +/////////////////////////////////////////////////////////////////////////////// + +#define _USE_32BIT_TIME_T //+++1.2 + + +#define STRICT +#define WIN32_LEAN_AND_MEAN +#include +#include +#include +#include "xzip.h" + +#pragma warning(disable : 4996) // disable bogus deprecation warning + +typedef unsigned char uch; // unsigned 8-bit value +typedef unsigned short ush; // unsigned 16-bit value +typedef unsigned long ulg; // unsigned 32-bit value +typedef size_t extent; // file size +typedef unsigned Pos; // must be at least 32 bits +typedef unsigned IPos; // A Pos is an index in the character window. Pos is used only for parameter passing + +#ifndef EOF +#define EOF (-1) +#endif + + +// Error return values. The values 0..4 and 12..18 follow the conventions +// of PKZIP. The values 4..10 are all assigned to "insufficient memory" +// by PKZIP, so the codes 5..10 are used here for other purposes. +#define ZE_MISS -1 // used by procname(), zipbare() +#define ZE_OK 0 // success +#define ZE_EOF 2 // unexpected end of zip file +#define ZE_FORM 3 // zip file structure error +#define ZE_MEM 4 // out of memory +#define ZE_LOGIC 5 // internal logic error +#define ZE_BIG 6 // entry too large to split +#define ZE_NOTE 7 // invalid comment format +#define ZE_TEST 8 // zip test (-T) failed or out of memory +#define ZE_ABORT 9 // user interrupt or termination +#define ZE_TEMP 10 // error using a temp file +#define ZE_READ 11 // read or seek error +#define ZE_NONE 12 // nothing to do +#define ZE_NAME 13 // missing or empty zip file +#define ZE_WRITE 14 // error writing to a file +#define ZE_CREAT 15 // couldn't open to write +#define ZE_PARMS 16 // bad command line +#define ZE_OPEN 18 // could not open a specified file to read +#define ZE_MAXERR 18 // the highest error number + + +// internal file attribute +#define UNKNOWN (-1) +#define BINARY 0 +#define ASCII 1 + +#define BEST -1 // Use best method (deflation or store) +#define STORE 0 // Store method +#define DEFLATE 8 // Deflation method + +#define CRCVAL_INITIAL 0L + +// MSDOS file or directory attributes +#define MSDOS_HIDDEN_ATTR 0x02 +#define MSDOS_DIR_ATTR 0x10 + +// Lengths of headers after signatures in bytes +#define LOCHEAD 26 +#define CENHEAD 42 +#define ENDHEAD 18 + +// Definitions for extra field handling: +#define EB_HEADSIZE 4 /* length of a extra field block header */ +#define EB_LEN 2 /* offset of data length field in header */ +#define EB_UT_MINLEN 1 /* minimal UT field contains Flags byte */ +#define EB_UT_FLAGS 0 /* byte offset of Flags field */ +#define EB_UT_TIME1 1 /* byte offset of 1st time value */ +#define EB_UT_FL_MTIME (1 << 0) /* mtime present */ +#define EB_UT_FL_ATIME (1 << 1) /* atime present */ +#define EB_UT_FL_CTIME (1 << 2) /* ctime present */ +#define EB_UT_LEN(n) (EB_UT_MINLEN + 4 * (n)) +#define EB_L_UT_SIZE (EB_HEADSIZE + EB_UT_LEN(3)) +#define EB_C_UT_SIZE (EB_HEADSIZE + EB_UT_LEN(1)) + + +// Macros for writing machine integers to little-endian format +#define PUTSH(a,f) {char _putsh_c=(char)((a)&0xff); wfunc(param,&_putsh_c,1); _putsh_c=(char)((a)>>8); wfunc(param,&_putsh_c,1);} +#define PUTLG(a,f) {PUTSH((a) & 0xffff,(f)) PUTSH((a) >> 16,(f))} + + +// -- Structure of a ZIP file -- +// Signatures for zip file information headers +#define LOCSIG 0x04034b50L +#define CENSIG 0x02014b50L +#define ENDSIG 0x06054b50L +#define EXTLOCSIG 0x08074b50L + + +#define MIN_MATCH 3 +#define MAX_MATCH 258 +// The minimum and maximum match lengths + + +#define WSIZE (0x8000) +// Maximum window size = 32K. If you are really short of memory, compile +// with a smaller WSIZE but this reduces the compression ratio for files +// of size > WSIZE. WSIZE must be a power of two in the current implementation. +// + +#define MIN_LOOKAHEAD (MAX_MATCH+MIN_MATCH+1) +// Minimum amount of lookahead, except at the end of the input file. +// See deflate.c for comments about the MIN_MATCH+1. +// + +#define MAX_DIST (WSIZE-MIN_LOOKAHEAD) +// In order to simplify the code, particularly on 16 bit machines, match +// distances are limited to MAX_DIST instead of WSIZE. +// + + + + + +// =========================================================================== +// Constants +// + +#define MAX_BITS 15 +// All codes must not exceed MAX_BITS bits + +#define MAX_BL_BITS 7 +// Bit length codes must not exceed MAX_BL_BITS bits + +#define LENGTH_CODES 29 +// number of length codes, not counting the special END_BLOCK code + +#define LITERALS 256 +// number of literal bytes 0..255 + +#define END_BLOCK 256 +// end of block literal code + +#define L_CODES (LITERALS+1+LENGTH_CODES) +// number of Literal or Length codes, including the END_BLOCK code + +#define D_CODES 30 +// number of distance codes + +#define BL_CODES 19 +// number of codes used to transfer the bit lengths + + +#define STORED_BLOCK 0 +#define STATIC_TREES 1 +#define DYN_TREES 2 +// The three kinds of block type + +#define LIT_BUFSIZE 0x8000 +#define DIST_BUFSIZE LIT_BUFSIZE +// Sizes of match buffers for literals/lengths and distances. There are +// 4 reasons for limiting LIT_BUFSIZE to 64K: +// - frequencies can be kept in 16 bit counters +// - if compression is not successful for the first block, all input data is +// still in the window so we can still emit a stored block even when input +// comes from standard input. (This can also be done for all blocks if +// LIT_BUFSIZE is not greater than 32K.) +// - if compression is not successful for a file smaller than 64K, we can +// even emit a stored file instead of a stored block (saving 5 bytes). +// - creating new Huffman trees less frequently may not provide fast +// adaptation to changes in the input data statistics. (Take for +// example a binary file with poorly compressible code followed by +// a highly compressible string table.) Smaller buffer sizes give +// fast adaptation but have of course the overhead of transmitting trees +// more frequently. +// - I can't count above 4 +// The current code is general and allows DIST_BUFSIZE < LIT_BUFSIZE (to save +// memory at the expense of compression). Some optimizations would be possible +// if we rely on DIST_BUFSIZE == LIT_BUFSIZE. +// + +#define REP_3_6 16 +// repeat previous bit length 3-6 times (2 bits of repeat count) + +#define REPZ_3_10 17 +// repeat a zero length 3-10 times (3 bits of repeat count) + +#define REPZ_11_138 18 +// repeat a zero length 11-138 times (7 bits of repeat count) + +#define HEAP_SIZE (2*L_CODES+1) +// maximum heap size + + +// =========================================================================== +// Local data used by the "bit string" routines. +// + +#define Buf_size (8 * 2*sizeof(char)) +// Number of bits used within bi_buf. (bi_buf may be implemented on +// more than 16 bits on some systems.) + +// Output a 16 bit value to the bit stream, lower (oldest) byte first +#if 0 // ----------------------------------------------------------- +#define PUTSHORT(state,w) \ +{ \ + if (state.bs.out_offset >= state.bs.out_size-1) \ + state.flush_outbuf(state.param,state.bs.out_buf, &state.bs.out_offset); \ + state.bs.out_buf[state.bs.out_offset++] = (char) ((w) & 0xff); \ + state.bs.out_buf[state.bs.out_offset++] = (char) ((ush)(w) >> 8); \ +} +#endif // ----------------------------------------------------------- + +//+++1.2 +#define PUTSHORT(state,w) \ +{ \ + if (state.bs.out_offset >= state.bs.out_size-1) \ + state.flush_outbuf(state.param,state.bs.out_buf, &state.bs.out_offset); \ + if (state.bs.out_offset < state.bs.out_size-1) \ + { \ + state.bs.out_buf[state.bs.out_offset++] = (char) ((w) & 0xff); \ + state.bs.out_buf[state.bs.out_offset++] = (char) ((ush)(w) >> 8); \ + }\ +} + +#if 0 // ----------------------------------------------------------- +#define PUTBYTE(state,b) \ +{ \ + if (state.bs.out_offset >= state.bs.out_size) \ + state.flush_outbuf(state.param,state.bs.out_buf, &state.bs.out_offset); \ + state.bs.out_buf[state.bs.out_offset++] = (char) (b); \ +} +#endif // ----------------------------------------------------------- + +//+++1.2 +#define PUTBYTE(state,b) \ +{ \ + if (state.bs.out_offset >= state.bs.out_size) \ + state.flush_outbuf(state.param,state.bs.out_buf, &state.bs.out_offset); \ + if (state.bs.out_offset < state.bs.out_size) \ + state.bs.out_buf[state.bs.out_offset++] = (char) (b); \ +} + +// DEFLATE.CPP HEADER + +#define HASH_BITS 15 +// For portability to 16 bit machines, do not use values above 15. + +#define HASH_SIZE (unsigned)(1<= HASH_BITS + +#define max_insert_length max_lazy_match +// Insert new strings in the hash table only if the match length +// is not greater than this length. This saves time but degrades compression. +// max_insert_length is used only for compression levels <= 3. + + + +const int extra_lbits[LENGTH_CODES] // extra bits for each length code + = {0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0}; + +const int extra_dbits[D_CODES] // extra bits for each distance code + = {0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13}; + +const int extra_blbits[BL_CODES]// extra bits for each bit length code + = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,7}; + +const uch bl_order[BL_CODES] = {16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15}; +// The lengths of the bit length codes are sent in order of decreasing +// probability, to avoid transmitting the lengths for unused bit length codes. + + +typedef struct config { + ush good_length; // reduce lazy search above this match length + ush max_lazy; // do not perform lazy search above this match length + ush nice_length; // quit search above this match length + ush max_chain; +} config; + +// Values for max_lazy_match, good_match, nice_match and max_chain_length, +// depending on the desired pack level (0..9). The values given below have +// been tuned to exclude worst case performance for pathological files. +// Better values may be found for specific files. +// + +const config configuration_table[10] = { +// good lazy nice chain + {0, 0, 0, 0}, // 0 store only + {4, 4, 8, 4}, // 1 maximum speed, no lazy matches + {4, 5, 16, 8}, // 2 + {4, 6, 32, 32}, // 3 + {4, 4, 16, 16}, // 4 lazy matches */ + {8, 16, 32, 32}, // 5 + {8, 16, 128, 128}, // 6 + {8, 32, 128, 256}, // 7 + {32, 128, 258, 1024}, // 8 + {32, 258, 258, 4096}};// 9 maximum compression */ + +// Note: the deflate() code requires max_lazy >= MIN_MATCH and max_chain >= 4 +// For deflate_fast() (levels <= 3) good is ignored and lazy has a different meaning. + + + + + +// Data structure describing a single value and its code string. +typedef struct ct_data { + union { + ush freq; // frequency count + ush code; // bit string + } fc; + union { + ush dad; // father node in Huffman tree + ush len; // length of bit string + } dl; +} ct_data; + +typedef struct tree_desc +{ + ct_data *dyn_tree; // the dynamic tree + ct_data *static_tree; // corresponding static tree or NULL + const int *extra_bits; // extra bits for each code or NULL + int extra_base; // base index for extra_bits + int elems; // max number of elements in the tree + int max_length; // max bit length for the codes + int max_code; // largest code with non zero frequency +} tree_desc; + + +class TTreeState +{ +public: + TTreeState(); + + ct_data dyn_ltree[HEAP_SIZE]; // literal and length tree + ct_data dyn_dtree[2*D_CODES+1]; // distance tree + ct_data static_ltree[L_CODES+2]; // the static literal tree... + // ... Since the bit lengths are imposed, there is no need for the L_CODES + // extra codes used during heap construction. However the codes 286 and 287 + // are needed to build a canonical tree (see ct_init below). + ct_data static_dtree[D_CODES]; // the static distance tree... + // ... (Actually a trivial tree since all codes use 5 bits.) + ct_data bl_tree[2*BL_CODES+1]; // Huffman tree for the bit lengths + + tree_desc l_desc; + tree_desc d_desc; + tree_desc bl_desc; + + ush bl_count[MAX_BITS+1]; // number of codes at each bit length for an optimal tree + + int heap[2*L_CODES+1]; // heap used to build the Huffman trees + int heap_len; // number of elements in the heap + int heap_max; // element of largest frequency + // The sons of heap[n] are heap[2*n] and heap[2*n+1]. heap[0] is not used. + // The same heap array is used to build all trees. + + uch depth[2*L_CODES+1]; + // Depth of each subtree used as tie breaker for trees of equal frequency + + uch length_code[MAX_MATCH-MIN_MATCH+1]; + // length code for each normalized match length (0 == MIN_MATCH) + + uch dist_code[512]; + // distance codes. The first 256 values correspond to the distances + // 3 .. 258, the last 256 values correspond to the top 8 bits of + // the 15 bit distances. + + int base_length[LENGTH_CODES]; + // First normalized length for each code (0 = MIN_MATCH) + + int base_dist[D_CODES]; + // First normalized distance for each code (0 = distance of 1) + + uch far l_buf[LIT_BUFSIZE]; // buffer for literals/lengths + ush far d_buf[DIST_BUFSIZE]; // buffer for distances + + uch flag_buf[(LIT_BUFSIZE/8)]; + // flag_buf is a bit array distinguishing literals from lengths in + // l_buf, and thus indicating the presence or absence of a distance. + + unsigned last_lit; // running index in l_buf + unsigned last_dist; // running index in d_buf + unsigned last_flags; // running index in flag_buf + uch flags; // current flags not yet saved in flag_buf + uch flag_bit; // current bit used in flags + // bits are filled in flags starting at bit 0 (least significant). + // Note: these flags are overkill in the current code since we don't + // take advantage of DIST_BUFSIZE == LIT_BUFSIZE. + + ulg opt_len; // bit length of current block with optimal trees + ulg static_len; // bit length of current block with static trees + + ulg cmpr_bytelen; // total byte length of compressed file + ulg cmpr_len_bits; // number of bits past 'cmpr_bytelen' + + ulg input_len; // total byte length of input file + // input_len is for debugging only since we can get it by other means. + + ush *file_type; // pointer to UNKNOWN, BINARY or ASCII +// int *file_method; // pointer to DEFLATE or STORE +}; + +TTreeState::TTreeState() +{ + tree_desc a = {dyn_ltree, static_ltree, extra_lbits, LITERALS+1, L_CODES, MAX_BITS, 0}; l_desc = a; + tree_desc b = {dyn_dtree, static_dtree, extra_dbits, 0, D_CODES, MAX_BITS, 0}; d_desc = b; + tree_desc c = {bl_tree, NULL, extra_blbits, 0, BL_CODES, MAX_BL_BITS, 0}; bl_desc = c; + last_lit = 0; + last_dist = 0; + last_flags = 0; + + memset(dyn_ltree, 0, sizeof(dyn_ltree)); + memset(dyn_dtree, 0, sizeof(dyn_dtree)); + memset(static_ltree, 0, sizeof(static_ltree)); + memset(static_dtree, 0, sizeof(static_dtree)); + memset(bl_tree, 0, sizeof(bl_tree)); + memset(bl_count, 0, sizeof(bl_count)); + memset(heap, 0, sizeof(heap)); + heap_len = 0; + heap_max = 0; + + memset(depth, 0, sizeof(depth)); + memset(length_code, 0, sizeof(length_code)); + memset(dist_code, 0, sizeof(dist_code)); + memset(base_length, 0, sizeof(base_length)); + memset(base_dist, 0, sizeof(base_dist)); + memset(l_buf, 0, sizeof(l_buf)); + memset(d_buf, 0, sizeof(d_buf)); + memset(flag_buf, 0, sizeof(flag_buf)); + + last_lit = 0; + last_dist = 0; + last_flags = 0; + flags = 0; + flag_bit = 0; + opt_len = 0; + static_len = 0; + cmpr_bytelen = 0; + cmpr_len_bits = 0; + input_len = 0; + file_type = 0; +} + +class TBitState +{ +public: + TBitState() + { + flush_flg = 0; + bi_buf = 0; + bi_valid = 0; + out_buf = 0; + out_offset = 0; + out_size = 0; + bits_sent = 0; + } + + int flush_flg; + // + unsigned bi_buf; + // Output buffer. bits are inserted starting at the bottom (least significant + // bits). The width of bi_buf must be at least 16 bits. + int bi_valid; + // Number of valid bits in bi_buf. All bits above the last valid bit + // are always zero. + char *out_buf; + // Current output buffer. + unsigned out_offset; + // Current offset in output buffer. + // On 16 bit machines, the buffer is limited to 64K. + unsigned out_size; + // Size of current output buffer + ulg bits_sent; // bit length of the compressed data only needed for debugging??? +}; + + +class TDeflateState +{ +public: + TDeflateState() + { + memset(window, 0, sizeof(window)); + memset(prev, 0, sizeof(prev)); + memset(head, 0, sizeof(head)); + window_size = 0; + block_start = 0; + sliding = 0; + ins_h = 0; + prev_length = 0; + strstart = 0; + match_start = 0; + eofile = 0; + lookahead = 0; + max_chain_length = 0; + max_lazy_match = 0; + good_match = 0; + nice_match = 0; + } + + uch window[2L*WSIZE]; + // Sliding window. Input bytes are read into the second half of the window, + // and move to the first half later to keep a dictionary of at least WSIZE + // bytes. With this organization, matches are limited to a distance of + // WSIZE-MAX_MATCH bytes, but this ensures that IO is always + // performed with a length multiple of the block size. Also, it limits + // the window size to 64K, which is quite useful on MSDOS. + // To do: limit the window size to WSIZE+CBSZ if SMALL_MEM (the code would + // be less efficient since the data would have to be copied WSIZE/CBSZ times) + Pos prev[WSIZE]; + // Link to older string with same hash index. To limit the size of this + // array to 64K, this link is maintained only for the last 32K strings. + // An index in this array is thus a window index modulo 32K. + Pos head[HASH_SIZE]; + // Heads of the hash chains or NIL. If your compiler thinks that + // HASH_SIZE is a dynamic value, recompile with -DDYN_ALLOC. + + ulg window_size; + // window size, 2*WSIZE except for MMAP or BIG_MEM, where it is the + // input file length plus MIN_LOOKAHEAD. + + long block_start; + // window position at the beginning of the current output block. Gets + // negative when the window is moved backwards. + + int sliding; + // Set to false when the input file is already in memory + + unsigned ins_h; // hash index of string to be inserted + + unsigned int prev_length; + // Length of the best match at previous step. Matches not greater than this + // are discarded. This is used in the lazy match evaluation. + + unsigned strstart; // start of string to insert + unsigned match_start; // start of matching string + int eofile; // flag set at end of input file + unsigned lookahead; // number of valid bytes ahead in window + + unsigned max_chain_length; + // To speed up deflation, hash chains are never searched beyond this length. + // A higher limit improves compression ratio but degrades the speed. + + unsigned int max_lazy_match; + // Attempt to find a better match only when the current match is strictly + // smaller than this value. This mechanism is used only for compression + // levels >= 4. + + unsigned good_match; + // Use a faster search when the previous match is longer than this + + int nice_match; // Stop searching when current match exceeds this +}; + + +typedef struct iztimes { + time_t atime,mtime,ctime; +} iztimes; // access, modify, create times + +typedef struct zlist { + ush vem, ver, flg, how; // See central header in zipfile.c for what vem..off are + ulg tim, crc, siz, len; + extent nam, ext, cext, com; // offset of ext must be >= LOCHEAD + ush dsk, att, lflg; // offset of lflg must be >= LOCHEAD + ulg atx, off; + char name[MAX_PATH]; // File name in zip file + char *extra; // Extra field (set only if ext != 0) + char *cextra; // Extra in central (set only if cext != 0) + char *comment; // Comment (set only if com != 0) + char iname[MAX_PATH]; // Internal file name after cleanup + char zname[MAX_PATH]; // External version of internal name + int mark; // Marker for files to operate on + int trash; // Marker for files to delete + int dosflag; // Set to force MSDOS file attributes + struct zlist far *nxt; // Pointer to next header in list +} TZipFileInfo; + + +class TState; +typedef unsigned (*READFUNC)(TState &state, char *buf,unsigned size); +typedef unsigned (*FLUSHFUNC)(void *param, const char *buf, unsigned *size); +typedef unsigned (*WRITEFUNC)(void *param, const char *buf, unsigned size); + +class TState +{ +public: + TState() //+++1.2 + { + param = 0; + level = 0; + seekable = FALSE; + readfunc = 0; + flush_outbuf = 0; + err = 0; + } + + void *param; + int level; + bool seekable; + READFUNC readfunc; + FLUSHFUNC flush_outbuf; + TTreeState ts; + TBitState bs; + TDeflateState ds; + const char *err; +}; + +void Assert(TState &state,bool cond, const char *msg) +{ if (cond) return; + state.err=msg; +} +void __cdecl Trace(const char *x, ...) {va_list paramList; va_start(paramList, x); paramList; va_end(paramList);} +void __cdecl Tracec(bool ,const char *x, ...) {va_list paramList; va_start(paramList, x); paramList; va_end(paramList);} + +// =========================================================================== +// Local (static) routines in this file. +// + +void init_block (TState &); +void pqdownheap (TState &,ct_data *tree, int k); +void gen_bitlen (TState &,tree_desc *desc); +void gen_codes (TState &state,ct_data *tree, int max_code); +void build_tree (TState &,tree_desc *desc); +void scan_tree (TState &,ct_data *tree, int max_code); +void send_tree (TState &state,ct_data *tree, int max_code); +int build_bl_tree (TState &); +void send_all_trees (TState &state,int lcodes, int dcodes, int blcodes); +void compress_block (TState &state,ct_data *ltree, ct_data *dtree); +void set_file_type (TState &); +void send_bits (TState &state, int value, int length); +unsigned bi_reverse (unsigned code, int len); +void bi_windup (TState &state); +void copy_block (TState &state,char *buf, unsigned len, int header); + + +#define send_code(state, c, tree) send_bits(state, tree[c].fc.code, tree[c].dl.len) +// Send a code of the given tree. c and tree must not have side effects + +// alternatively... +//#define send_code(state, c, tree) +// { if (state.verbose>1) fprintf(stderr,"\ncd %3d ",(c)); +// send_bits(state, tree[c].fc.code, tree[c].dl.len); } + +#define d_code(dist) ((dist) < 256 ? state.ts.dist_code[dist] : state.ts.dist_code[256+((dist)>>7)]) +// Mapping from a distance to a distance code. dist is the distance - 1 and +// must not have side effects. dist_code[256] and dist_code[257] are never used. + +#define Max(a,b) (a >= b ? a : b) +/* the arguments must not have side effects */ + +/* =========================================================================== + * Allocate the match buffer, initialize the various tables and save the + * location of the internal file attribute (ascii/binary) and method + * (DEFLATE/STORE). + */ +void ct_init(TState &state, ush *attr) +{ + int n; /* iterates over tree elements */ + int bits; /* bit counter */ + int length; /* length value */ + int code; /* code value */ + int dist; /* distance index */ + + state.ts.file_type = attr; + //state.ts.file_method = method; + state.ts.cmpr_bytelen = state.ts.cmpr_len_bits = 0L; + state.ts.input_len = 0L; + + if (state.ts.static_dtree[0].dl.len != 0) return; /* ct_init already called */ + + /* Initialize the mapping length (0..255) -> length code (0..28) */ + length = 0; + for (code = 0; code < LENGTH_CODES-1; code++) { + state.ts.base_length[code] = length; + for (n = 0; n < (1< dist code (0..29) */ + dist = 0; + for (code = 0 ; code < 16; code++) { + state.ts.base_dist[code] = dist; + for (n = 0; n < (1<>= 7; /* from now on, all distances are divided by 128 */ + for ( ; code < D_CODES; code++) { + state.ts.base_dist[code] = dist << 7; + for (n = 0; n < (1<<(extra_dbits[code]-7)); n++) { + state.ts.dist_code[256 + dist++] = (uch)code; + } + } + Assert(state,dist == 256, "ct_init: 256+dist != 512"); + + /* Construct the codes of the static literal tree */ + for (bits = 0; bits <= MAX_BITS; bits++) state.ts.bl_count[bits] = 0; + n = 0; + while (n <= 143) state.ts.static_ltree[n++].dl.len = 8, state.ts.bl_count[8]++; + while (n <= 255) state.ts.static_ltree[n++].dl.len = 9, state.ts.bl_count[9]++; + while (n <= 279) state.ts.static_ltree[n++].dl.len = 7, state.ts.bl_count[7]++; + while (n <= 287) state.ts.static_ltree[n++].dl.len = 8, state.ts.bl_count[8]++; + /* fc.codes 286 and 287 do not exist, but we must include them in the + * tree construction to get a canonical Huffman tree (longest code + * all ones) + */ + gen_codes(state,(ct_data *)state.ts.static_ltree, L_CODES+1); + + /* The static distance tree is trivial: */ + for (n = 0; n < D_CODES; n++) { + state.ts.static_dtree[n].dl.len = 5; + state.ts.static_dtree[n].fc.code = (ush)bi_reverse(n, 5); + } + + /* Initialize the first block of the first file: */ + init_block(state); +} + +/* =========================================================================== + * Initialize a new block. + */ +void init_block(TState &state) +{ + int n; /* iterates over tree elements */ + + /* Initialize the trees. */ + for (n = 0; n < L_CODES; n++) state.ts.dyn_ltree[n].fc.freq = 0; + for (n = 0; n < D_CODES; n++) state.ts.dyn_dtree[n].fc.freq = 0; + for (n = 0; n < BL_CODES; n++) state.ts.bl_tree[n].fc.freq = 0; + + state.ts.dyn_ltree[END_BLOCK].fc.freq = 1; + state.ts.opt_len = state.ts.static_len = 0L; + state.ts.last_lit = state.ts.last_dist = state.ts.last_flags = 0; + state.ts.flags = 0; state.ts.flag_bit = 1; +} + +#define SMALLEST 1 +/* Index within the heap array of least frequent node in the Huffman tree */ + + +/* =========================================================================== + * Remove the smallest element from the heap and recreate the heap with + * one less element. Updates heap and heap_len. + */ +#define pqremove(tree, top) \ +{\ + top = state.ts.heap[SMALLEST]; \ + state.ts.heap[SMALLEST] = state.ts.heap[state.ts.heap_len--]; \ + pqdownheap(state,tree, SMALLEST); \ +} + +/* =========================================================================== + * Compares to subtrees, using the tree depth as tie breaker when + * the subtrees have equal frequency. This minimizes the worst case length. + */ +#define smaller(tree, n, m) \ + (tree[n].fc.freq < tree[m].fc.freq || \ + (tree[n].fc.freq == tree[m].fc.freq && state.ts.depth[n] <= state.ts.depth[m])) + +/* =========================================================================== + * Restore the heap property by moving down the tree starting at node k, + * exchanging a node with the smallest of its two sons if necessary, stopping + * when the heap property is re-established (each father smaller than its + * two sons). + */ +void pqdownheap(TState &state,ct_data *tree, int k) +{ + int v = state.ts.heap[k]; + int j = k << 1; /* left son of k */ + int htemp; /* required because of bug in SASC compiler */ + + while (j <= state.ts.heap_len) { + /* Set j to the smallest of the two sons: */ + if (j < state.ts.heap_len && smaller(tree, state.ts.heap[j+1], state.ts.heap[j])) j++; + + /* Exit if v is smaller than both sons */ + htemp = state.ts.heap[j]; + if (smaller(tree, v, htemp)) break; + + /* Exchange v with the smallest son */ + state.ts.heap[k] = htemp; + k = j; + + /* And continue down the tree, setting j to the left son of k */ + j <<= 1; + } + state.ts.heap[k] = v; +} + +/* =========================================================================== + * Compute the optimal bit lengths for a tree and update the total bit length + * for the current block. + * IN assertion: the fields freq and dad are set, heap[heap_max] and + * above are the tree nodes sorted by increasing frequency. + * OUT assertions: the field len is set to the optimal bit length, the + * array bl_count contains the frequencies for each bit length. + * The length opt_len is updated; static_len is also updated if stree is + * not null. + */ +void gen_bitlen(TState &state,tree_desc *desc) +{ + ct_data *tree = desc->dyn_tree; + const int *extra = desc->extra_bits; + int base = desc->extra_base; + int max_code = desc->max_code; + int max_length = desc->max_length; + ct_data *stree = desc->static_tree; + int h; /* heap index */ + int n, m; /* iterate over the tree elements */ + int bits; /* bit length */ + int xbits; /* extra bits */ + ush f; /* frequency */ + int overflow = 0; /* number of elements with bit length too large */ + + for (bits = 0; bits <= MAX_BITS; bits++) state.ts.bl_count[bits] = 0; + + /* In a first pass, compute the optimal bit lengths (which may + * overflow in the case of the bit length tree). + */ + tree[state.ts.heap[state.ts.heap_max]].dl.len = 0; /* root of the heap */ + + for (h = state.ts.heap_max+1; h < HEAP_SIZE; h++) { + n = state.ts.heap[h]; + bits = tree[tree[n].dl.dad].dl.len + 1; + if (bits > max_length) bits = max_length, overflow++; + tree[n].dl.len = (ush)bits; + /* We overwrite tree[n].dl.dad which is no longer needed */ + + if (n > max_code) continue; /* not a leaf node */ + + state.ts.bl_count[bits]++; + xbits = 0; + if (n >= base) xbits = extra[n-base]; + f = tree[n].fc.freq; + state.ts.opt_len += (ulg)f * (bits + xbits); + if (stree) state.ts.static_len += (ulg)f * (stree[n].dl.len + xbits); + } + if (overflow == 0) return; + + Trace("\nbit length overflow\n"); + /* This happens for example on obj2 and pic of the Calgary corpus */ + + /* Find the first bit length which could increase: */ + do { + bits = max_length-1; + while (state.ts.bl_count[bits] == 0) bits--; + state.ts.bl_count[bits]--; /* move one leaf down the tree */ + state.ts.bl_count[bits+1] += (ush)2; /* move one overflow item as its brother */ + state.ts.bl_count[max_length]--; + /* The brother of the overflow item also moves one step up, + * but this does not affect bl_count[max_length] + */ + overflow -= 2; + } while (overflow > 0); + + /* Now recompute all bit lengths, scanning in increasing frequency. + * h is still equal to HEAP_SIZE. (It is simpler to reconstruct all + * lengths instead of fixing only the wrong ones. This idea is taken + * from 'ar' written by Haruhiko Okumura.) + */ + for (bits = max_length; bits != 0; bits--) { + n = state.ts.bl_count[bits]; + while (n != 0) { + m = state.ts.heap[--h]; + if (m > max_code) continue; + if (tree[m].dl.len != (ush)bits) { + Trace("code %d bits %d->%d\n", m, tree[m].dl.len, bits); + state.ts.opt_len += ((long)bits-(long)tree[m].dl.len)*(long)tree[m].fc.freq; + tree[m].dl.len = (ush)bits; + } + n--; + } + } +} + +/* =========================================================================== + * Generate the codes for a given tree and bit counts (which need not be + * optimal). + * IN assertion: the array bl_count contains the bit length statistics for + * the given tree and the field len is set for all tree elements. + * OUT assertion: the field code is set for all tree elements of non + * zero code length. + */ +void gen_codes (TState &state, ct_data *tree, int max_code) +{ + ush next_code[MAX_BITS+1]; /* next code value for each bit length */ + ush code = 0; /* running code value */ + int bits; /* bit index */ + int n; /* code index */ + + /* The distribution counts are first used to generate the code values + * without bit reversal. + */ + for (bits = 1; bits <= MAX_BITS; bits++) { + next_code[bits] = code = (ush)((code + state.ts.bl_count[bits-1]) << 1); + } + /* Check that the bit counts in bl_count are consistent. The last code + * must be all ones. + */ + Assert(state,code + state.ts.bl_count[MAX_BITS]-1 == (1<< ((ush) MAX_BITS)) - 1, + "inconsistent bit counts"); + Trace("\ngen_codes: max_code %d ", max_code); + + for (n = 0; n <= max_code; n++) { + int len = tree[n].dl.len; + if (len == 0) continue; + /* Now reverse the bits */ + tree[n].fc.code = (ush)bi_reverse(next_code[len]++, len); + + //Tracec(tree != state.ts.static_ltree, "\nn %3d %c l %2d c %4x (%x) ", n, (isgraph(n) ? n : ' '), len, tree[n].fc.code, next_code[len]-1); + } +} + +/* =========================================================================== + * Construct one Huffman tree and assigns the code bit strings and lengths. + * Update the total bit length for the current block. + * IN assertion: the field freq is set for all tree elements. + * OUT assertions: the fields len and code are set to the optimal bit length + * and corresponding code. The length opt_len is updated; static_len is + * also updated if stree is not null. The field max_code is set. + */ +void build_tree(TState &state,tree_desc *desc) +{ + ct_data *tree = desc->dyn_tree; + ct_data *stree = desc->static_tree; + int elems = desc->elems; + int n, m; /* iterate over heap elements */ + int max_code = -1; /* largest code with non zero frequency */ + int node = elems; /* next internal node of the tree */ + + /* Construct the initial heap, with least frequent element in + * heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n+1]. + * heap[0] is not used. + */ + state.ts.heap_len = 0, state.ts.heap_max = HEAP_SIZE; + + for (n = 0; n < elems; n++) { + if (tree[n].fc.freq != 0) { + state.ts.heap[++state.ts.heap_len] = max_code = n; + state.ts.depth[n] = 0; + } else { + tree[n].dl.len = 0; + } + } + + /* The pkzip format requires that at least one distance code exists, + * and that at least one bit should be sent even if there is only one + * possible code. So to avoid special checks later on we force at least + * two codes of non zero frequency. + */ + while (state.ts.heap_len < 2) { + int newcp = state.ts.heap[++state.ts.heap_len] = (max_code < 2 ? ++max_code : 0); + tree[newcp].fc.freq = 1; + state.ts.depth[newcp] = 0; + state.ts.opt_len--; if (stree) state.ts.static_len -= stree[newcp].dl.len; + /* new is 0 or 1 so it does not have extra bits */ + } + desc->max_code = max_code; + + /* The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree, + * establish sub-heaps of increasing lengths: + */ + for (n = state.ts.heap_len/2; n >= 1; n--) pqdownheap(state,tree, n); + + /* Construct the Huffman tree by repeatedly combining the least two + * frequent nodes. + */ + do { + pqremove(tree, n); /* n = node of least frequency */ + m = state.ts.heap[SMALLEST]; /* m = node of next least frequency */ + + state.ts.heap[--state.ts.heap_max] = n; /* keep the nodes sorted by frequency */ + state.ts.heap[--state.ts.heap_max] = m; + + /* Create a new node father of n and m */ + tree[node].fc.freq = (ush)(tree[n].fc.freq + tree[m].fc.freq); + state.ts.depth[node] = (uch) (Max(state.ts.depth[n], state.ts.depth[m]) + 1); + tree[n].dl.dad = tree[m].dl.dad = (ush)node; + /* and insert the new node in the heap */ + state.ts.heap[SMALLEST] = node++; + pqdownheap(state,tree, SMALLEST); + + } while (state.ts.heap_len >= 2); + + state.ts.heap[--state.ts.heap_max] = state.ts.heap[SMALLEST]; + + /* At this point, the fields freq and dad are set. We can now + * generate the bit lengths. + */ + gen_bitlen(state,(tree_desc *)desc); + + /* The field len is now set, we can generate the bit codes */ + gen_codes (state,(ct_data *)tree, max_code); +} + +/* =========================================================================== + * Scan a literal or distance tree to determine the frequencies of the codes + * in the bit length tree. Updates opt_len to take into account the repeat + * counts. (The contribution of the bit length codes will be added later + * during the construction of bl_tree.) + */ +void scan_tree (TState &state,ct_data *tree, int max_code) +{ + int n; /* iterates over all tree elements */ + int prevlen = -1; /* last emitted length */ + int curlen; /* length of current code */ + int nextlen = tree[0].dl.len; /* length of next code */ + int count = 0; /* repeat count of the current code */ + int max_count = 7; /* max repeat count */ + int min_count = 4; /* min repeat count */ + + if (nextlen == 0) max_count = 138, min_count = 3; + tree[max_code+1].dl.len = (ush)-1; /* guard */ + + for (n = 0; n <= max_code; n++) { + curlen = nextlen; nextlen = tree[n+1].dl.len; + if (++count < max_count && curlen == nextlen) { + continue; + } else if (count < min_count) { + state.ts.bl_tree[curlen].fc.freq = (ush)(state.ts.bl_tree[curlen].fc.freq + count); + } else if (curlen != 0) { + if (curlen != prevlen) state.ts.bl_tree[curlen].fc.freq++; + state.ts.bl_tree[REP_3_6].fc.freq++; + } else if (count <= 10) { + state.ts.bl_tree[REPZ_3_10].fc.freq++; + } else { + state.ts.bl_tree[REPZ_11_138].fc.freq++; + } + count = 0; prevlen = curlen; + if (nextlen == 0) { + max_count = 138, min_count = 3; + } else if (curlen == nextlen) { + max_count = 6, min_count = 3; + } else { + max_count = 7, min_count = 4; + } + } +} + +/* =========================================================================== + * Send a literal or distance tree in compressed form, using the codes in + * bl_tree. + */ +void send_tree (TState &state, ct_data *tree, int max_code) +{ + int n; /* iterates over all tree elements */ + int prevlen = -1; /* last emitted length */ + int curlen; /* length of current code */ + int nextlen = tree[0].dl.len; /* length of next code */ + int count = 0; /* repeat count of the current code */ + int max_count = 7; /* max repeat count */ + int min_count = 4; /* min repeat count */ + + /* tree[max_code+1].dl.len = -1; */ /* guard already set */ + if (nextlen == 0) max_count = 138, min_count = 3; + + for (n = 0; n <= max_code; n++) { + curlen = nextlen; nextlen = tree[n+1].dl.len; + if (++count < max_count && curlen == nextlen) { + continue; + } else if (count < min_count) { + do { send_code(state, curlen, state.ts.bl_tree); } while (--count != 0); + + } else if (curlen != 0) { + if (curlen != prevlen) { + send_code(state, curlen, state.ts.bl_tree); count--; + } + Assert(state,count >= 3 && count <= 6, " 3_6?"); + send_code(state,REP_3_6, state.ts.bl_tree); send_bits(state,count-3, 2); + + } else if (count <= 10) { + send_code(state,REPZ_3_10, state.ts.bl_tree); send_bits(state,count-3, 3); + + } else { + send_code(state,REPZ_11_138, state.ts.bl_tree); send_bits(state,count-11, 7); + } + count = 0; prevlen = curlen; + if (nextlen == 0) { + max_count = 138, min_count = 3; + } else if (curlen == nextlen) { + max_count = 6, min_count = 3; + } else { + max_count = 7, min_count = 4; + } + } +} + +/* =========================================================================== + * Construct the Huffman tree for the bit lengths and return the index in + * bl_order of the last bit length code to send. + */ +int build_bl_tree(TState &state) +{ + int max_blindex; /* index of last bit length code of non zero freq */ + + /* Determine the bit length frequencies for literal and distance trees */ + scan_tree(state,(ct_data *)state.ts.dyn_ltree, state.ts.l_desc.max_code); + scan_tree(state,(ct_data *)state.ts.dyn_dtree, state.ts.d_desc.max_code); + + /* Build the bit length tree: */ + build_tree(state,(tree_desc *)(&state.ts.bl_desc)); + /* opt_len now includes the length of the tree representations, except + * the lengths of the bit lengths codes and the 5+5+4 bits for the counts. + */ + + /* Determine the number of bit length codes to send. The pkzip format + * requires that at least 4 bit length codes be sent. (appnote.txt says + * 3 but the actual value used is 4.) + */ + for (max_blindex = BL_CODES-1; max_blindex >= 3; max_blindex--) { + if (state.ts.bl_tree[bl_order[max_blindex]].dl.len != 0) break; + } + /* Update opt_len to include the bit length tree and counts */ + state.ts.opt_len += 3*(max_blindex+1) + 5+5+4; + Trace("\ndyn trees: dyn %ld, stat %ld", state.ts.opt_len, state.ts.static_len); + + return max_blindex; +} + +/* =========================================================================== + * Send the header for a block using dynamic Huffman trees: the counts, the + * lengths of the bit length codes, the literal tree and the distance tree. + * IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4. + */ +void send_all_trees(TState &state,int lcodes, int dcodes, int blcodes) +{ + int rank; /* index in bl_order */ + + Assert(state,lcodes >= 257 && dcodes >= 1 && blcodes >= 4, "not enough codes"); + Assert(state,lcodes <= L_CODES && dcodes <= D_CODES && blcodes <= BL_CODES, + "too many codes"); + Trace("\nbl counts: "); + send_bits(state,lcodes-257, 5); + /* not +255 as stated in appnote.txt 1.93a or -256 in 2.04c */ + send_bits(state,dcodes-1, 5); + send_bits(state,blcodes-4, 4); /* not -3 as stated in appnote.txt */ + for (rank = 0; rank < blcodes; rank++) { + Trace("\nbl code %2d ", bl_order[rank]); + send_bits(state,state.ts.bl_tree[bl_order[rank]].dl.len, 3); + } + Trace("\nbl tree: sent %ld", state.bs.bits_sent); + + send_tree(state,(ct_data *)state.ts.dyn_ltree, lcodes-1); /* send the literal tree */ + Trace("\nlit tree: sent %ld", state.bs.bits_sent); + + send_tree(state,(ct_data *)state.ts.dyn_dtree, dcodes-1); /* send the distance tree */ + Trace("\ndist tree: sent %ld", state.bs.bits_sent); +} + +/* =========================================================================== + * Determine the best encoding for the current block: dynamic trees, static + * trees or store, and output the encoded block to the zip file. This function + * returns the total compressed length (in bytes) for the file so far. + */ +ulg flush_block(TState &state,char *buf, ulg stored_len, int eof) +{ + ulg opt_lenb, static_lenb; /* opt_len and static_len in bytes */ + int max_blindex; /* index of last bit length code of non zero freq */ + + state.ts.flag_buf[state.ts.last_flags] = state.ts.flags; /* Save the flags for the last 8 items */ + + /* Check if the file is ascii or binary */ + if (*state.ts.file_type == (ush)UNKNOWN) set_file_type(state); + + /* Construct the literal and distance trees */ + build_tree(state,(tree_desc *)(&state.ts.l_desc)); + Trace("\nlit data: dyn %ld, stat %ld", state.ts.opt_len, state.ts.static_len); + + build_tree(state,(tree_desc *)(&state.ts.d_desc)); + Trace("\ndist data: dyn %ld, stat %ld", state.ts.opt_len, state.ts.static_len); + /* At this point, opt_len and static_len are the total bit lengths of + * the compressed block data, excluding the tree representations. + */ + + /* Build the bit length tree for the above two trees, and get the index + * in bl_order of the last bit length code to send. + */ + max_blindex = build_bl_tree(state); + + /* Determine the best encoding. Compute first the block length in bytes */ + opt_lenb = (state.ts.opt_len+3+7)>>3; + static_lenb = (state.ts.static_len+3+7)>>3; + state.ts.input_len += stored_len; /* for debugging only */ + + Trace("\nopt %lu(%lu) stat %lu(%lu) stored %lu lit %u dist %u ", + opt_lenb, state.ts.opt_len, static_lenb, state.ts.static_len, stored_len, + state.ts.last_lit, state.ts.last_dist); + + if (static_lenb <= opt_lenb) opt_lenb = static_lenb; + + // Originally, zip allowed the file to be transformed from a compressed + // into a stored file in the case where compression failed, there + // was only one block, and it was allowed to change. I've removed this + // possibility since the code's cleaner if no changes are allowed. + //if (stored_len <= opt_lenb && eof && state.ts.cmpr_bytelen == 0L + // && state.ts.cmpr_len_bits == 0L && state.seekable) + //{ // && state.ts.file_method != NULL + // // Since LIT_BUFSIZE <= 2*WSIZE, the input data must be there: + // Assert(state,buf!=NULL,"block vanished"); + // copy_block(state,buf, (unsigned)stored_len, 0); // without header + // state.ts.cmpr_bytelen = stored_len; + // Assert(state,false,"unimplemented *state.ts.file_method = STORE;"); + // //*state.ts.file_method = STORE; + //} + //else + if (stored_len+4 <= opt_lenb && buf != (char*)NULL) { + /* 4: two words for the lengths */ + /* The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE. + * Otherwise we can't have processed more than WSIZE input bytes since + * the last block flush, because compression would have been + * successful. If LIT_BUFSIZE <= WSIZE, it is never too late to + * transform a block into a stored block. + */ + send_bits(state,(STORED_BLOCK<<1)+eof, 3); /* send block type */ + state.ts.cmpr_bytelen += ((state.ts.cmpr_len_bits + 3 + 7) >> 3) + stored_len + 4; + state.ts.cmpr_len_bits = 0L; + + copy_block(state,buf, (unsigned)stored_len, 1); /* with header */ + } + else if (static_lenb == opt_lenb) { + send_bits(state,(STATIC_TREES<<1)+eof, 3); + compress_block(state,(ct_data *)state.ts.static_ltree, (ct_data *)state.ts.static_dtree); + state.ts.cmpr_len_bits += 3 + state.ts.static_len; + state.ts.cmpr_bytelen += state.ts.cmpr_len_bits >> 3; + state.ts.cmpr_len_bits &= 7L; + } + else { + send_bits(state,(DYN_TREES<<1)+eof, 3); + send_all_trees(state,state.ts.l_desc.max_code+1, state.ts.d_desc.max_code+1, max_blindex+1); + compress_block(state,(ct_data *)state.ts.dyn_ltree, (ct_data *)state.ts.dyn_dtree); + state.ts.cmpr_len_bits += 3 + state.ts.opt_len; + state.ts.cmpr_bytelen += state.ts.cmpr_len_bits >> 3; + state.ts.cmpr_len_bits &= 7L; + } + Assert(state,((state.ts.cmpr_bytelen << 3) + state.ts.cmpr_len_bits) == state.bs.bits_sent, "bad compressed size"); + init_block(state); + + if (eof) { + // Assert(state,input_len == isize, "bad input size"); + bi_windup(state); + state.ts.cmpr_len_bits += 7; /* align on byte boundary */ + } + Trace("\n"); + + return state.ts.cmpr_bytelen + (state.ts.cmpr_len_bits >> 3); +} + +/* =========================================================================== + * Save the match info and tally the frequency counts. Return true if + * the current block must be flushed. + */ +int ct_tally (TState &state,int dist, int lc) +{ + state.ts.l_buf[state.ts.last_lit++] = (uch)lc; + if (dist == 0) { + /* lc is the unmatched char */ + state.ts.dyn_ltree[lc].fc.freq++; + } else { + /* Here, lc is the match length - MIN_MATCH */ + dist--; /* dist = match distance - 1 */ + Assert(state,(ush)dist < (ush)MAX_DIST && + (ush)lc <= (ush)(MAX_MATCH-MIN_MATCH) && + (ush)d_code(dist) < (ush)D_CODES, "ct_tally: bad match"); + + state.ts.dyn_ltree[state.ts.length_code[lc]+LITERALS+1].fc.freq++; + state.ts.dyn_dtree[d_code(dist)].fc.freq++; + + state.ts.d_buf[state.ts.last_dist++] = (ush)dist; + state.ts.flags |= state.ts.flag_bit; + } + state.ts.flag_bit <<= 1; + + /* Output the flags if they fill a byte: */ + if ((state.ts.last_lit & 7) == 0) { + state.ts.flag_buf[state.ts.last_flags++] = state.ts.flags; + state.ts.flags = 0, state.ts.flag_bit = 1; + } + /* Try to guess if it is profitable to stop the current block here */ + if (state.level > 2 && (state.ts.last_lit & 0xfff) == 0) { + /* Compute an upper bound for the compressed length */ + ulg out_length = (ulg)state.ts.last_lit*8L; + ulg in_length = (ulg)state.ds.strstart-state.ds.block_start; + int dcode; + for (dcode = 0; dcode < D_CODES; dcode++) { + out_length += (ulg)state.ts.dyn_dtree[dcode].fc.freq*(5L+extra_dbits[dcode]); + } + out_length >>= 3; + Trace("\nlast_lit %u, last_dist %u, in %ld, out ~%ld(%ld%%) ", + state.ts.last_lit, state.ts.last_dist, in_length, out_length, + 100L - out_length*100L/in_length); + if (state.ts.last_dist < state.ts.last_lit/2 && out_length < in_length/2) return 1; + } + return (state.ts.last_lit == LIT_BUFSIZE-1 || state.ts.last_dist == DIST_BUFSIZE); + /* We avoid equality with LIT_BUFSIZE because of wraparound at 64K + * on 16 bit machines and because stored blocks are restricted to + * 64K-1 bytes. + */ +} + +/* =========================================================================== + * Send the block data compressed using the given Huffman trees + */ +void compress_block(TState &state,ct_data *ltree, ct_data *dtree) +{ + unsigned dist; /* distance of matched string */ + int lc; /* match length or unmatched char (if dist == 0) */ + unsigned lx = 0; /* running index in l_buf */ + unsigned dx = 0; /* running index in d_buf */ + unsigned fx = 0; /* running index in flag_buf */ + uch flag = 0; /* current flags */ + unsigned code; /* the code to send */ + int extra; /* number of extra bits to send */ + + if (state.ts.last_lit != 0) do { + if ((lx & 7) == 0) flag = state.ts.flag_buf[fx++]; + lc = state.ts.l_buf[lx++]; + if ((flag & 1) == 0) { + send_code(state,lc, ltree); /* send a literal byte */ + } else { + /* Here, lc is the match length - MIN_MATCH */ + code = state.ts.length_code[lc]; + send_code(state,code+LITERALS+1, ltree); /* send the length code */ + extra = extra_lbits[code]; + if (extra != 0) { + lc -= state.ts.base_length[code]; + send_bits(state,lc, extra); /* send the extra length bits */ + } + dist = state.ts.d_buf[dx++]; + /* Here, dist is the match distance - 1 */ + code = d_code(dist); + Assert(state,code < D_CODES, "bad d_code"); + + send_code(state,code, dtree); /* send the distance code */ + extra = extra_dbits[code]; + if (extra != 0) { + dist -= state.ts.base_dist[code]; + send_bits(state,dist, extra); /* send the extra distance bits */ + } + } /* literal or match pair ? */ + flag >>= 1; + } while (lx < state.ts.last_lit); + + send_code(state,END_BLOCK, ltree); +} + +/* =========================================================================== + * Set the file type to ASCII or BINARY, using a crude approximation: + * binary if more than 20% of the bytes are <= 6 or >= 128, ascii otherwise. + * IN assertion: the fields freq of dyn_ltree are set and the total of all + * frequencies does not exceed 64K (to fit in an int on 16 bit machines). + */ +void set_file_type(TState &state) +{ + int n = 0; + unsigned ascii_freq = 0; + unsigned bin_freq = 0; + while (n < 7) bin_freq += state.ts.dyn_ltree[n++].fc.freq; + while (n < 128) ascii_freq += state.ts.dyn_ltree[n++].fc.freq; + while (n < LITERALS) bin_freq += state.ts.dyn_ltree[n++].fc.freq; + *state.ts.file_type = (ush)(bin_freq > (ascii_freq >> 2) ? BINARY : ASCII); +} + + +/* =========================================================================== + * Initialize the bit string routines. + */ +void bi_init (TState &state,char *tgt_buf, unsigned tgt_size, int flsh_allowed) +{ + state.bs.out_buf = tgt_buf; + state.bs.out_size = tgt_size; + state.bs.out_offset = 0; + state.bs.flush_flg = flsh_allowed; + + state.bs.bi_buf = 0; + state.bs.bi_valid = 0; + state.bs.bits_sent = 0L; +} + +/* =========================================================================== + * Send a value on a given number of bits. + * IN assertion: length <= 16 and value fits in length bits. + */ +void send_bits(TState &state,int value, int length) +{ + Assert(state,length > 0 && length <= 15, "invalid length"); + state.bs.bits_sent += (ulg)length; + /* If not enough room in bi_buf, use (bi_valid) bits from bi_buf and + * (Buf_size - bi_valid) bits from value to flush the filled bi_buf, + * then fill in the rest of (value), leaving (length - (Buf_size-bi_valid)) + * unused bits in bi_buf. + */ + state.bs.bi_buf |= (value << state.bs.bi_valid); + state.bs.bi_valid += length; + if (state.bs.bi_valid > (int)Buf_size) { + PUTSHORT(state,state.bs.bi_buf); + state.bs.bi_valid -= Buf_size; + state.bs.bi_buf = (unsigned)value >> (length - state.bs.bi_valid); + } +} + +/* =========================================================================== + * Reverse the first len bits of a code, using straightforward code (a faster + * method would use a table) + * IN assertion: 1 <= len <= 15 + */ +unsigned bi_reverse(unsigned code, int len) +{ + register unsigned res = 0; + do { + res |= code & 1; + code >>= 1, res <<= 1; + } while (--len > 0); + return res >> 1; +} + +/* =========================================================================== + * Write out any remaining bits in an incomplete byte. + */ +void bi_windup(TState &state) +{ + if (state.bs.bi_valid > 8) { + PUTSHORT(state,state.bs.bi_buf); + } else if (state.bs.bi_valid > 0) { + PUTBYTE(state,state.bs.bi_buf); + } + if (state.bs.flush_flg) { + state.flush_outbuf(state.param,state.bs.out_buf, &state.bs.out_offset); + } + state.bs.bi_buf = 0; + state.bs.bi_valid = 0; + state.bs.bits_sent = (state.bs.bits_sent+7) & ~7; +} + +/* =========================================================================== + * Copy a stored block to the zip file, storing first the length and its + * one's complement if requested. + */ +void copy_block(TState &state, char *block, unsigned len, int header) +{ + bi_windup(state); /* align on byte boundary */ + + if (header) { + PUTSHORT(state,(ush)len); + PUTSHORT(state,(ush)~len); + state.bs.bits_sent += 2*16; + } + if (state.bs.flush_flg) { + state.flush_outbuf(state.param,state.bs.out_buf, &state.bs.out_offset); + state.bs.out_offset = len; + state.flush_outbuf(state.param,block, &state.bs.out_offset); + } else if (state.bs.out_offset + len > state.bs.out_size) { + Assert(state,false,"output buffer too small for in-memory compression"); + } else { + memcpy(state.bs.out_buf + state.bs.out_offset, block, len); + state.bs.out_offset += len; + } + state.bs.bits_sent += (ulg)len<<3; +} + + + + + + + + +/* =========================================================================== + * Prototypes for functions. + */ + +void fill_window (TState &state); +ulg deflate_fast (TState &state); + +int longest_match (TState &state,IPos cur_match); + + +/* =========================================================================== + * Update a hash value with the given input byte + * IN assertion: all calls to to UPDATE_HASH are made with consecutive + * input characters, so that a running hash key can be computed from the + * previous key instead of complete recalculation each time. + */ +#define UPDATE_HASH(h,c) (h = (((h)< 0 if the input file is already read or + * mmap'ed in the window[] array, 0 otherwise. In the first case, + * window_size is sufficient to contain the whole input file plus + * MIN_LOOKAHEAD bytes (to avoid referencing memory beyond the end + * of window[] when looking for matches towards the end). + */ +void lm_init (TState &state, int pack_level, ush *flags) +{ + register unsigned j; + + Assert(state,pack_level>=1 && pack_level<=8,"bad pack level"); + + /* Do not slide the window if the whole input is already in memory + * (window_size > 0) + */ + state.ds.sliding = 0; + if (state.ds.window_size == 0L) { + state.ds.sliding = 1; + state.ds.window_size = (ulg)2L*WSIZE; + } + + /* Initialize the hash table (avoiding 64K overflow for 16 bit systems). + * prev[] will be initialized on the fly. + */ + state.ds.head[HASH_SIZE-1] = NIL; + memset((char*)state.ds.head, NIL, (unsigned)(HASH_SIZE-1)*sizeof(*state.ds.head)); + + /* Set the default configuration parameters: + */ + state.ds.max_lazy_match = configuration_table[pack_level].max_lazy; + state.ds.good_match = configuration_table[pack_level].good_length; + state.ds.nice_match = configuration_table[pack_level].nice_length; + state.ds.max_chain_length = configuration_table[pack_level].max_chain; + if (pack_level <= 2) { + *flags |= FAST; + } else if (pack_level >= 8) { + *flags |= SLOW; + } + /* ??? reduce max_chain_length for binary files */ + + state.ds.strstart = 0; + state.ds.block_start = 0L; + + j = WSIZE; + j <<= 1; // Can read 64K in one step + state.ds.lookahead = state.readfunc(state, (char*)state.ds.window, j); + + if (state.ds.lookahead == 0 || state.ds.lookahead == (unsigned)EOF) { + state.ds.eofile = 1, state.ds.lookahead = 0; + return; + } + state.ds.eofile = 0; + /* Make sure that we always have enough lookahead. This is important + * if input comes from a device such as a tty. + */ + if (state.ds.lookahead < MIN_LOOKAHEAD) fill_window(state); + + state.ds.ins_h = 0; + for (j=0; j= 1 + */ +// For 80x86 and 680x0 and ARM, an optimized version is in match.asm or +// match.S. The code is functionally equivalent, so you can use the C version +// if desired. Which I do so desire! +int longest_match(TState &state,IPos cur_match) +{ + unsigned chain_length = state.ds.max_chain_length; /* max hash chain length */ + register uch far *scan = state.ds.window + state.ds.strstart; /* current string */ + register uch far *match; /* matched string */ + register int len; /* length of current match */ + int best_len = state.ds.prev_length; /* best match length so far */ + IPos limit = state.ds.strstart > (IPos)MAX_DIST ? state.ds.strstart - (IPos)MAX_DIST : NIL; + /* Stop when cur_match becomes <= limit. To simplify the code, + * we prevent matches with the string of window index 0. + */ + + // The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16. + // It is easy to get rid of this optimization if necessary. + Assert(state,HASH_BITS>=8 && MAX_MATCH==258,"Code too clever"); + + + + register uch far *strend = state.ds.window + state.ds.strstart + MAX_MATCH; + register uch scan_end1 = scan[best_len-1]; + register uch scan_end = scan[best_len]; + + /* Do not waste too much time if we already have a good match: */ + if (state.ds.prev_length >= state.ds.good_match) { + chain_length >>= 2; + } + + Assert(state,state.ds.strstart <= state.ds.window_size-MIN_LOOKAHEAD, "insufficient lookahead"); + + do { + Assert(state,cur_match < state.ds.strstart, "no future"); + match = state.ds.window + cur_match; + + /* Skip to next match if the match length cannot increase + * or if the match length is less than 2: + */ + if (match[best_len] != scan_end || + match[best_len-1] != scan_end1 || + *match != *scan || + *++match != scan[1]) continue; + + /* The check at best_len-1 can be removed because it will be made + * again later. (This heuristic is not always a win.) + * It is not necessary to compare scan[2] and match[2] since they + * are always equal when the other bytes match, given that + * the hash keys are equal and that HASH_BITS >= 8. + */ + scan += 2, match++; + + /* We check for insufficient lookahead only every 8th comparison; + * the 256th check will be made at strstart+258. + */ + do { + } while (*++scan == *++match && *++scan == *++match && + *++scan == *++match && *++scan == *++match && + *++scan == *++match && *++scan == *++match && + *++scan == *++match && *++scan == *++match && + scan < strend); + + Assert(state,scan <= state.ds.window+(unsigned)(state.ds.window_size-1), "wild scan"); + + len = MAX_MATCH - (int)(strend - scan); + scan = strend - MAX_MATCH; + + + if (len > best_len) { + state.ds.match_start = cur_match; + best_len = len; + if (len >= state.ds.nice_match) break; + scan_end1 = scan[best_len-1]; + scan_end = scan[best_len]; + } + } while ((cur_match = state.ds.prev[cur_match & WMASK]) > limit + && --chain_length != 0); + + return best_len; +} + + + +#define check_match(state,start, match, length) +// or alternatively... +//void check_match(TState &state,IPos start, IPos match, int length) +//{ // check that the match is indeed a match +// if (memcmp((char*)state.ds.window + match, +// (char*)state.ds.window + start, length) != EQUAL) { +// fprintf(stderr, +// " start %d, match %d, length %d\n", +// start, match, length); +// error("invalid match"); +// } +// if (state.verbose > 1) { +// fprintf(stderr,"\\[%d,%d]", start-match, length); +// do { fprintf(stdout,"%c",state.ds.window[start++]); } while (--length != 0); +// } +//} + +/* =========================================================================== + * Fill the window when the lookahead becomes insufficient. + * Updates strstart and lookahead, and sets eofile if end of input file. + * + * IN assertion: lookahead < MIN_LOOKAHEAD && strstart + lookahead > 0 + * OUT assertions: strstart <= window_size-MIN_LOOKAHEAD + * At least one byte has been read, or eofile is set; file reads are + * performed for at least two bytes (required for the translate_eol option). + */ +void fill_window(TState &state) +{ + register unsigned n, m; + unsigned more; /* Amount of free space at the end of the window. */ + + do { + more = (unsigned)(state.ds.window_size - (ulg)state.ds.lookahead - (ulg)state.ds.strstart); + + /* If the window is almost full and there is insufficient lookahead, + * move the upper half to the lower one to make room in the upper half. + */ + if (more == (unsigned)EOF) { + /* Very unlikely, but possible on 16 bit machine if strstart == 0 + * and lookahead == 1 (input done one byte at time) + */ + more--; + + /* For MMAP or BIG_MEM, the whole input file is already in memory so + * we must not perform sliding. We must however call (*read_buf)() in + * order to compute the crc, update lookahead and possibly set eofile. + */ + } else if (state.ds.strstart >= WSIZE+MAX_DIST && state.ds.sliding) { + + /* By the IN assertion, the window is not empty so we can't confuse + * more == 0 with more == 64K on a 16 bit machine. + */ + memcpy((char*)state.ds.window, (char*)state.ds.window+WSIZE, (unsigned)WSIZE); + state.ds.match_start -= WSIZE; + state.ds.strstart -= WSIZE; /* we now have strstart >= MAX_DIST: */ + + state.ds.block_start -= (long) WSIZE; + + for (n = 0; n < HASH_SIZE; n++) { + m = state.ds.head[n]; + state.ds.head[n] = (Pos)(m >= WSIZE ? m-WSIZE : NIL); + } + for (n = 0; n < WSIZE; n++) { + m = state.ds.prev[n]; + state.ds.prev[n] = (Pos)(m >= WSIZE ? m-WSIZE : NIL); + /* If n is not on any hash chain, prev[n] is garbage but + * its value will never be used. + */ + } + more += WSIZE; + } + if (state.ds.eofile) return; + + /* If there was no sliding: + * strstart <= WSIZE+MAX_DIST-1 && lookahead <= MIN_LOOKAHEAD - 1 && + * more == window_size - lookahead - strstart + * => more >= window_size - (MIN_LOOKAHEAD-1 + WSIZE + MAX_DIST-1) + * => more >= window_size - 2*WSIZE + 2 + * In the MMAP or BIG_MEM case (not yet supported in gzip), + * window_size == input_size + MIN_LOOKAHEAD && + * strstart + lookahead <= input_size => more >= MIN_LOOKAHEAD. + * Otherwise, window_size == 2*WSIZE so more >= 2. + * If there was sliding, more >= WSIZE. So in all cases, more >= 2. + */ + Assert(state,more >= 2, "more < 2"); + + n = state.readfunc(state, (char*)state.ds.window+state.ds.strstart+state.ds.lookahead, more); + + if (n == 0 || n == (unsigned)EOF) { + state.ds.eofile = 1; + } else { + state.ds.lookahead += n; + } + } while (state.ds.lookahead < MIN_LOOKAHEAD && !state.ds.eofile); +} + +/* =========================================================================== + * Flush the current block, with given end-of-file flag. + * IN assertion: strstart is set to the end of the current match. + */ +#define FLUSH_BLOCK(state,eof) \ + flush_block(state,state.ds.block_start >= 0L ? (char*)&state.ds.window[(unsigned)state.ds.block_start] : \ + (char*)NULL, (long)state.ds.strstart - state.ds.block_start, (eof)) + +/* =========================================================================== + * Processes a new input file and return its compressed length. This + * function does not perform lazy evaluation of matches and inserts + * new strings in the dictionary only for unmatched strings or for short + * matches. It is used only for the fast compression options. + */ +ulg deflate_fast(TState &state) +{ + IPos hash_head = NIL; /* head of the hash chain */ + int flush; /* set if current block must be flushed */ + unsigned match_length = 0; /* length of best match */ + + state.ds.prev_length = MIN_MATCH-1; + while (state.ds.lookahead != 0) { + /* Insert the string window[strstart .. strstart+2] in the + * dictionary, and set hash_head to the head of the hash chain: + */ + if (state.ds.lookahead >= MIN_MATCH) + INSERT_STRING(state.ds.strstart, hash_head); + + /* Find the longest match, discarding those <= prev_length. + * At this point we have always match_length < MIN_MATCH + */ + if (hash_head != NIL && state.ds.strstart - hash_head <= MAX_DIST) { + /* To simplify the code, we prevent matches with the string + * of window index 0 (in particular we have to avoid a match + * of the string with itself at the start of the input file). + */ + /* Do not look for matches beyond the end of the input. + * This is necessary to make deflate deterministic. + */ + if ((unsigned)state.ds.nice_match > state.ds.lookahead) state.ds.nice_match = (int)state.ds.lookahead; + match_length = longest_match (state,hash_head); + /* longest_match() sets match_start */ + if (match_length > state.ds.lookahead) match_length = state.ds.lookahead; + } + if (match_length >= MIN_MATCH) { + check_match(state,state.ds.strstart, state.ds.match_start, match_length); + + flush = ct_tally(state,state.ds.strstart-state.ds.match_start, match_length - MIN_MATCH); + + state.ds.lookahead -= match_length; + + /* Insert new strings in the hash table only if the match length + * is not too large. This saves time but degrades compression. + */ + if (match_length <= state.ds.max_insert_length + && state.ds.lookahead >= MIN_MATCH) { + match_length--; /* string at strstart already in hash table */ + do { + state.ds.strstart++; + INSERT_STRING(state.ds.strstart, hash_head); + /* strstart never exceeds WSIZE-MAX_MATCH, so there are + * always MIN_MATCH bytes ahead. + */ + } while (--match_length != 0); + state.ds.strstart++; + } else { + state.ds.strstart += match_length; + match_length = 0; + state.ds.ins_h = state.ds.window[state.ds.strstart]; + UPDATE_HASH(state.ds.ins_h, state.ds.window[state.ds.strstart+1]); + Assert(state,MIN_MATCH==3,"Call UPDATE_HASH() MIN_MATCH-3 more times"); + } + } else { + /* No match, output a literal byte */ + flush = ct_tally (state,0, state.ds.window[state.ds.strstart]); + state.ds.lookahead--; + state.ds.strstart++; + } + if (flush) FLUSH_BLOCK(state,0), state.ds.block_start = state.ds.strstart; + + /* Make sure that we always have enough lookahead, except + * at the end of the input file. We need MAX_MATCH bytes + * for the next match, plus MIN_MATCH bytes to insert the + * string following the next match. + */ + if (state.ds.lookahead < MIN_LOOKAHEAD) fill_window(state); + } + return FLUSH_BLOCK(state,1); /* eof */ +} + +/* =========================================================================== + * Same as above, but achieves better compression. We use a lazy + * evaluation for matches: a match is finally adopted only if there is + * no better match at the next window position. + */ +ulg deflate(TState &state) +{ + IPos hash_head = NIL; /* head of hash chain */ + IPos prev_match; /* previous match */ + int flush; /* set if current block must be flushed */ + int match_available = 0; /* set if previous match exists */ + register unsigned match_length = MIN_MATCH-1; /* length of best match */ + + if (state.level <= 3) return deflate_fast(state); /* optimized for speed */ + + /* Process the input block. */ + while (state.ds.lookahead != 0) { + /* Insert the string window[strstart .. strstart+2] in the + * dictionary, and set hash_head to the head of the hash chain: + */ + if (state.ds.lookahead >= MIN_MATCH) + INSERT_STRING(state.ds.strstart, hash_head); + + /* Find the longest match, discarding those <= prev_length. + */ + state.ds.prev_length = match_length, prev_match = state.ds.match_start; + match_length = MIN_MATCH-1; + + if (hash_head != NIL && state.ds.prev_length < state.ds.max_lazy_match && + state.ds.strstart - hash_head <= MAX_DIST) { + /* To simplify the code, we prevent matches with the string + * of window index 0 (in particular we have to avoid a match + * of the string with itself at the start of the input file). + */ + /* Do not look for matches beyond the end of the input. + * This is necessary to make deflate deterministic. + */ + if ((unsigned)state.ds.nice_match > state.ds.lookahead) state.ds.nice_match = (int)state.ds.lookahead; + match_length = longest_match (state,hash_head); + /* longest_match() sets match_start */ + if (match_length > state.ds.lookahead) match_length = state.ds.lookahead; + + /* Ignore a length 3 match if it is too distant: */ + if (match_length == MIN_MATCH && state.ds.strstart-state.ds.match_start > TOO_FAR){ + /* If prev_match is also MIN_MATCH, match_start is garbage + * but we will ignore the current match anyway. + */ + match_length = MIN_MATCH-1; + } + } + /* If there was a match at the previous step and the current + * match is not better, output the previous match: + */ + if (state.ds.prev_length >= MIN_MATCH && match_length <= state.ds.prev_length) { + unsigned max_insert = state.ds.strstart + state.ds.lookahead - MIN_MATCH; + check_match(state,state.ds.strstart-1, prev_match, state.ds.prev_length); + flush = ct_tally(state,state.ds.strstart-1-prev_match, state.ds.prev_length - MIN_MATCH); + + /* Insert in hash table all strings up to the end of the match. + * strstart-1 and strstart are already inserted. + */ + state.ds.lookahead -= state.ds.prev_length-1; + state.ds.prev_length -= 2; + do { + if (++state.ds.strstart <= max_insert) { + INSERT_STRING(state.ds.strstart, hash_head); + /* strstart never exceeds WSIZE-MAX_MATCH, so there are + * always MIN_MATCH bytes ahead. + */ + } + } while (--state.ds.prev_length != 0); + state.ds.strstart++; + match_available = 0; + match_length = MIN_MATCH-1; + + if (flush) FLUSH_BLOCK(state,0), state.ds.block_start = state.ds.strstart; + + } else if (match_available) { + /* If there was no match at the previous position, output a + * single literal. If there was a match but the current match + * is longer, truncate the previous match to a single literal. + */ + if (ct_tally (state,0, state.ds.window[state.ds.strstart-1])) { + FLUSH_BLOCK(state,0), state.ds.block_start = state.ds.strstart; + } + state.ds.strstart++; + state.ds.lookahead--; + } else { + /* There is no previous match to compare with, wait for + * the next step to decide. + */ + match_available = 1; + state.ds.strstart++; + state.ds.lookahead--; + } +// Assert(state,strstart <= isize && lookahead <= isize, "a bit too far"); + + /* Make sure that we always have enough lookahead, except + * at the end of the input file. We need MAX_MATCH bytes + * for the next match, plus MIN_MATCH bytes to insert the + * string following the next match. + */ + if (state.ds.lookahead < MIN_LOOKAHEAD) fill_window(state); + } + if (match_available) ct_tally (state,0, state.ds.window[state.ds.strstart-1]); + + return FLUSH_BLOCK(state,1); /* eof */ +} + + + + + + + + + + + + +int putlocal(struct zlist far *z, WRITEFUNC wfunc,void *param) +{ // Write a local header described by *z to file *f. Return a ZE_ error code. + PUTLG(LOCSIG, f); + PUTSH(z->ver, f); + PUTSH(z->lflg, f); + PUTSH(z->how, f); + PUTLG(z->tim, f); + PUTLG(z->crc, f); + PUTLG(z->siz, f); + PUTLG(z->len, f); + PUTSH(z->nam, f); + PUTSH(z->ext, f); + size_t res = (size_t)wfunc(param, z->iname, (unsigned int)z->nam); + if (res!=z->nam) return ZE_TEMP; + if (z->ext) + { res = (size_t)wfunc(param, z->extra, (unsigned int)z->ext); + if (res!=z->ext) return ZE_TEMP; + } + return ZE_OK; +} + +int putextended(struct zlist far *z, WRITEFUNC wfunc, void *param) +{ // Write an extended local header described by *z to file *f. Returns a ZE_ code + PUTLG(EXTLOCSIG, f); + PUTLG(z->crc, f); + PUTLG(z->siz, f); + PUTLG(z->len, f); + return ZE_OK; +} + +int putcentral(struct zlist far *z, WRITEFUNC wfunc, void *param) +{ // Write a central header entry of *z to file *f. Returns a ZE_ code. + PUTLG(CENSIG, f); + PUTSH(z->vem, f); + PUTSH(z->ver, f); + PUTSH(z->flg, f); + PUTSH(z->how, f); + PUTLG(z->tim, f); + PUTLG(z->crc, f); + PUTLG(z->siz, f); + PUTLG(z->len, f); + PUTSH(z->nam, f); + PUTSH(z->cext, f); + PUTSH(z->com, f); + PUTSH(z->dsk, f); + PUTSH(z->att, f); + PUTLG(z->atx, f); + PUTLG(z->off, f); + if ((size_t)wfunc(param, z->iname, (unsigned int)z->nam) != z->nam || + (z->cext && (size_t)wfunc(param, z->cextra, (unsigned int)z->cext) != z->cext) || + (z->com && (size_t)wfunc(param, z->comment, (unsigned int)z->com) != z->com)) + return ZE_TEMP; + return ZE_OK; +} + + +int putend(int n, ulg s, ulg c, extent m, char *z, WRITEFUNC wfunc, void *param) +{ // write the end of the central-directory-data to file *f. + PUTLG(ENDSIG, f); + PUTSH(0, f); + PUTSH(0, f); + PUTSH(n, f); + PUTSH(n, f); + PUTLG(s, f); + PUTLG(c, f); + PUTSH(m, f); + // Write the comment, if any + if (m && wfunc(param, z, (unsigned int)m) != m) return ZE_TEMP; + return ZE_OK; +} + + + + + + +const ulg crc_table[256] = { + 0x00000000L, 0x77073096L, 0xee0e612cL, 0x990951baL, 0x076dc419L, + 0x706af48fL, 0xe963a535L, 0x9e6495a3L, 0x0edb8832L, 0x79dcb8a4L, + 0xe0d5e91eL, 0x97d2d988L, 0x09b64c2bL, 0x7eb17cbdL, 0xe7b82d07L, + 0x90bf1d91L, 0x1db71064L, 0x6ab020f2L, 0xf3b97148L, 0x84be41deL, + 0x1adad47dL, 0x6ddde4ebL, 0xf4d4b551L, 0x83d385c7L, 0x136c9856L, + 0x646ba8c0L, 0xfd62f97aL, 0x8a65c9ecL, 0x14015c4fL, 0x63066cd9L, + 0xfa0f3d63L, 0x8d080df5L, 0x3b6e20c8L, 0x4c69105eL, 0xd56041e4L, + 0xa2677172L, 0x3c03e4d1L, 0x4b04d447L, 0xd20d85fdL, 0xa50ab56bL, + 0x35b5a8faL, 0x42b2986cL, 0xdbbbc9d6L, 0xacbcf940L, 0x32d86ce3L, + 0x45df5c75L, 0xdcd60dcfL, 0xabd13d59L, 0x26d930acL, 0x51de003aL, + 0xc8d75180L, 0xbfd06116L, 0x21b4f4b5L, 0x56b3c423L, 0xcfba9599L, + 0xb8bda50fL, 0x2802b89eL, 0x5f058808L, 0xc60cd9b2L, 0xb10be924L, + 0x2f6f7c87L, 0x58684c11L, 0xc1611dabL, 0xb6662d3dL, 0x76dc4190L, + 0x01db7106L, 0x98d220bcL, 0xefd5102aL, 0x71b18589L, 0x06b6b51fL, + 0x9fbfe4a5L, 0xe8b8d433L, 0x7807c9a2L, 0x0f00f934L, 0x9609a88eL, + 0xe10e9818L, 0x7f6a0dbbL, 0x086d3d2dL, 0x91646c97L, 0xe6635c01L, + 0x6b6b51f4L, 0x1c6c6162L, 0x856530d8L, 0xf262004eL, 0x6c0695edL, + 0x1b01a57bL, 0x8208f4c1L, 0xf50fc457L, 0x65b0d9c6L, 0x12b7e950L, + 0x8bbeb8eaL, 0xfcb9887cL, 0x62dd1ddfL, 0x15da2d49L, 0x8cd37cf3L, + 0xfbd44c65L, 0x4db26158L, 0x3ab551ceL, 0xa3bc0074L, 0xd4bb30e2L, + 0x4adfa541L, 0x3dd895d7L, 0xa4d1c46dL, 0xd3d6f4fbL, 0x4369e96aL, + 0x346ed9fcL, 0xad678846L, 0xda60b8d0L, 0x44042d73L, 0x33031de5L, + 0xaa0a4c5fL, 0xdd0d7cc9L, 0x5005713cL, 0x270241aaL, 0xbe0b1010L, + 0xc90c2086L, 0x5768b525L, 0x206f85b3L, 0xb966d409L, 0xce61e49fL, + 0x5edef90eL, 0x29d9c998L, 0xb0d09822L, 0xc7d7a8b4L, 0x59b33d17L, + 0x2eb40d81L, 0xb7bd5c3bL, 0xc0ba6cadL, 0xedb88320L, 0x9abfb3b6L, + 0x03b6e20cL, 0x74b1d29aL, 0xead54739L, 0x9dd277afL, 0x04db2615L, + 0x73dc1683L, 0xe3630b12L, 0x94643b84L, 0x0d6d6a3eL, 0x7a6a5aa8L, + 0xe40ecf0bL, 0x9309ff9dL, 0x0a00ae27L, 0x7d079eb1L, 0xf00f9344L, + 0x8708a3d2L, 0x1e01f268L, 0x6906c2feL, 0xf762575dL, 0x806567cbL, + 0x196c3671L, 0x6e6b06e7L, 0xfed41b76L, 0x89d32be0L, 0x10da7a5aL, + 0x67dd4accL, 0xf9b9df6fL, 0x8ebeeff9L, 0x17b7be43L, 0x60b08ed5L, + 0xd6d6a3e8L, 0xa1d1937eL, 0x38d8c2c4L, 0x4fdff252L, 0xd1bb67f1L, + 0xa6bc5767L, 0x3fb506ddL, 0x48b2364bL, 0xd80d2bdaL, 0xaf0a1b4cL, + 0x36034af6L, 0x41047a60L, 0xdf60efc3L, 0xa867df55L, 0x316e8eefL, + 0x4669be79L, 0xcb61b38cL, 0xbc66831aL, 0x256fd2a0L, 0x5268e236L, + 0xcc0c7795L, 0xbb0b4703L, 0x220216b9L, 0x5505262fL, 0xc5ba3bbeL, + 0xb2bd0b28L, 0x2bb45a92L, 0x5cb36a04L, 0xc2d7ffa7L, 0xb5d0cf31L, + 0x2cd99e8bL, 0x5bdeae1dL, 0x9b64c2b0L, 0xec63f226L, 0x756aa39cL, + 0x026d930aL, 0x9c0906a9L, 0xeb0e363fL, 0x72076785L, 0x05005713L, + 0x95bf4a82L, 0xe2b87a14L, 0x7bb12baeL, 0x0cb61b38L, 0x92d28e9bL, + 0xe5d5be0dL, 0x7cdcefb7L, 0x0bdbdf21L, 0x86d3d2d4L, 0xf1d4e242L, + 0x68ddb3f8L, 0x1fda836eL, 0x81be16cdL, 0xf6b9265bL, 0x6fb077e1L, + 0x18b74777L, 0x88085ae6L, 0xff0f6a70L, 0x66063bcaL, 0x11010b5cL, + 0x8f659effL, 0xf862ae69L, 0x616bffd3L, 0x166ccf45L, 0xa00ae278L, + 0xd70dd2eeL, 0x4e048354L, 0x3903b3c2L, 0xa7672661L, 0xd06016f7L, + 0x4969474dL, 0x3e6e77dbL, 0xaed16a4aL, 0xd9d65adcL, 0x40df0b66L, + 0x37d83bf0L, 0xa9bcae53L, 0xdebb9ec5L, 0x47b2cf7fL, 0x30b5ffe9L, + 0xbdbdf21cL, 0xcabac28aL, 0x53b39330L, 0x24b4a3a6L, 0xbad03605L, + 0xcdd70693L, 0x54de5729L, 0x23d967bfL, 0xb3667a2eL, 0xc4614ab8L, + 0x5d681b02L, 0x2a6f2b94L, 0xb40bbe37L, 0xc30c8ea1L, 0x5a05df1bL, + 0x2d02ef8dL +}; + +#define CRC32(c, b) (crc_table[((int)(c) ^ (b)) & 0xff] ^ ((c) >> 8)) +#define DO1(buf) crc = CRC32(crc, *buf++) +#define DO2(buf) DO1(buf); DO1(buf) +#define DO4(buf) DO2(buf); DO2(buf) +#define DO8(buf) DO4(buf); DO4(buf) + +ulg crc32(ulg crc, const uch *buf, extent len) +{ if (buf==NULL) return 0L; + crc = crc ^ 0xffffffffL; + while (len >= 8) {DO8(buf); len -= 8;} + if (len) do {DO1(buf);} while (--len); + return crc ^ 0xffffffffL; // (instead of ~c for 64-bit machines) +} + + + + + + + + +bool HasZipSuffix(const char *fn) +{ const char *ext = fn+strlen(fn); + while (ext>fn && *ext!='.') ext--; + if (ext==fn && *ext!='.') return false; + if (stricmp(ext,".Z")==0) return true; + if (stricmp(ext,".zip")==0) return true; + if (stricmp(ext,".zoo")==0) return true; + if (stricmp(ext,".arc")==0) return true; + if (stricmp(ext,".lzh")==0) return true; + if (stricmp(ext,".arj")==0) return true; + if (stricmp(ext,".gz")==0) return true; + if (stricmp(ext,".tgz")==0) return true; + return false; +} + + +time_t filetime2timet(const FILETIME ft) +{ SYSTEMTIME st; FileTimeToSystemTime(&ft,&st); + if (st.wYear<1970) {st.wYear=1970; st.wMonth=1; st.wDay=1;} + if (st.wYear>=2038) {st.wYear=2037; st.wMonth=12; st.wDay=31;} + struct tm tm; + tm.tm_sec = st.wSecond; + tm.tm_min = st.wMinute; + tm.tm_hour = st.wHour; + tm.tm_mday = st.wDay; + tm.tm_mon = st.wMonth-1; + tm.tm_year = st.wYear-1900; + tm.tm_isdst = 0; + time_t t = mktime(&tm); + return t; +} + + +ZRESULT GetFileInfo(HANDLE hf, ulg *attr, long *size, iztimes *times, ulg *timestamp) +{ + DWORD type=GetFileType(hf); + if (type!=FILE_TYPE_DISK) + return ZR_NOTINITED; + // The handle must be a handle to a file + // The date and time is returned in a long with the date most significant to allow + // unsigned integer comparison of absolute times. The attributes have two + // high bytes unix attr, and two low bytes a mapping of that to DOS attr. + //struct stat s; int res=stat(fn,&s); if (res!=0) return false; + // translate windows file attributes into zip ones. + BY_HANDLE_FILE_INFORMATION bhi; + BOOL res=GetFileInformationByHandle(hf,&bhi); + if (!res) + return ZR_NOFILE; + + // +++1.3 + /// Convert times from UTC to local time. MSDN says that FILETIME is local + /// for FAT file system and UTC for NTFS system, but tests show that both FAT and NTFS + /// return UTC time. + { + // Get time zone difference + SYSTEMTIME stUTC, stLocal; + GetSystemTime(&stUTC); + GetLocalTime(&stLocal); // could be a few milliseconds difference, but should we care? + FILETIME ftUTC, ftLocal; + SystemTimeToFileTime(&stUTC, &ftUTC); + SystemTimeToFileTime(&stLocal, &ftLocal); + LONG64 uiUTC, uiLocal; + memcpy (&uiUTC, &ftUTC, min(sizeof(LONG64), sizeof(FILETIME))); // use 'min' as safeguard, however both sizes should be the same: 64-bit + memcpy (&uiLocal, &ftLocal, min(sizeof(LONG64), sizeof(FILETIME))); + LONG64 uiTimeDiff = uiUTC - uiLocal; + + // apply difference + FILETIME* pFileTimes[3] = { &bhi.ftLastWriteTime, &bhi.ftLastAccessTime, &bhi.ftCreationTime }; + for (int i=0; i<3; i++){ + LONG64 uiUTC_file; + memcpy (&uiUTC_file, pFileTimes[i], min(sizeof(LONG64), sizeof(FILETIME))); + LONG64 uiLocal_file = uiUTC_file - uiTimeDiff; + memcpy (pFileTimes[i], &uiLocal_file, min(sizeof(LONG64), sizeof(FILETIME))); + } + } + + DWORD fa=bhi.dwFileAttributes; + ulg a=0; + // Zip uses the lower word for its interpretation of windows stuff + if (fa&FILE_ATTRIBUTE_READONLY) a|=0x01; + if (fa&FILE_ATTRIBUTE_HIDDEN) a|=0x02; + if (fa&FILE_ATTRIBUTE_SYSTEM) a|=0x04; + if (fa&FILE_ATTRIBUTE_DIRECTORY)a|=0x10; + if (fa&FILE_ATTRIBUTE_ARCHIVE) a|=0x20; + // It uses the upper word for standard unix attr, which we must manually construct + if (fa&FILE_ATTRIBUTE_DIRECTORY)a|=0x40000000; // directory + else a|=0x80000000; // normal file + a|=0x01000000; // readable + if (fa&FILE_ATTRIBUTE_READONLY) {} + else a|=0x00800000; // writeable + // now just a small heuristic to check if it's an executable: + DWORD red, hsize=GetFileSize(hf,NULL); if (hsize>40) + { SetFilePointer(hf,0,NULL,FILE_BEGIN); unsigned short magic; ReadFile(hf,&magic,sizeof(magic),&red,NULL); + SetFilePointer(hf,36,NULL,FILE_BEGIN); unsigned long hpos; ReadFile(hf,&hpos,sizeof(hpos),&red,NULL); + if (magic==0x54AD && hsize>hpos+4+20+28) + { SetFilePointer(hf,hpos,NULL,FILE_BEGIN); unsigned long signature; ReadFile(hf,&signature,sizeof(signature),&red,NULL); + if (signature==IMAGE_DOS_SIGNATURE || signature==IMAGE_OS2_SIGNATURE + || signature==IMAGE_OS2_SIGNATURE_LE || signature==IMAGE_NT_SIGNATURE) + { a |= 0x00400000; // executable + } + } + } + // + if (attr!=NULL) *attr = a; + if (size!=NULL) *size = hsize; + if (times!=NULL) + { // time_t is 32bit number of seconds elapsed since 0:0:0GMT, Jan1, 1970. + // but FILETIME is 64bit number of 100-nanosecs since Jan1, 1601 + times->atime = filetime2timet(bhi.ftLastAccessTime); + times->mtime = filetime2timet(bhi.ftLastWriteTime); + times->ctime = filetime2timet(bhi.ftCreationTime); + } + if (timestamp!=NULL) + { WORD dosdate,dostime; + FileTimeToDosDateTime(&bhi.ftLastWriteTime,&dosdate,&dostime); + *timestamp = (WORD)dostime | (((DWORD)dosdate)<<16); + } + return ZR_OK; +} + + + + + +/////////////////////////////////////////////////////////////////////////////// +/////////////////////////////////////////////////////////////////////////////// +/////////////////////////////////////////////////////////////////////////////// + +class TZip +{ public: + TZip() : hfout(0),hmapout(0),zfis(0),obuf(0),hfin(0),writ(0),oerr(false),hasputcen(false),ooffset(0) {} + ~TZip() {} + + // These variables say about the file we're writing into + // We can write to pipe, file-by-handle, file-by-name, memory-to-memmapfile + HANDLE hfout; // if valid, we'll write here (for files or pipes) + HANDLE hmapout; // otherwise, we'll write here (for memmap) + unsigned ooffset; // for hfout, this is where the pointer was initially + ZRESULT oerr; // did a write operation give rise to an error? + unsigned writ; // how far have we written. This is maintained by Add, not write(), to avoid confusion over seeks + bool ocanseek; // can we seek? + char *obuf; // this is where we've locked mmap to view. + unsigned int opos; // current pos in the mmap + unsigned int mapsize; // the size of the map we created + bool hasputcen; // have we yet placed the central directory? + // + TZipFileInfo *zfis; // each file gets added onto this list, for writing the table at the end + + ZRESULT Create(void *z,unsigned int len,DWORD flags); + static unsigned sflush(void *param,const char *buf, unsigned *size); + static unsigned swrite(void *param,const char *buf, unsigned size); + unsigned int write(const char *buf,unsigned int size); + bool oseek(unsigned int pos); + ZRESULT GetMemory(void **pbuf, unsigned long *plen); + ZRESULT Close(); + + // some variables to do with the file currently being read: + // I haven't done it object-orientedly here, just put them all + // together, since OO didn't seem to make the design any clearer. + ulg attr; iztimes times; ulg timestamp; // all open_* methods set these + bool iseekable; long isize,ired; // size is not set until close() on pips + ulg crc; // crc is not set until close(). iwrit is cumulative + HANDLE hfin; bool selfclosehf; // for input files and pipes + const char *bufin; unsigned int lenin,posin; // for memory + // and a variable for what we've done with the input: (i.e. compressed it!) + ulg csize; // compressed size, set by the compression routines + // and this is used by some of the compression routines + char buf[16384]; + + + ZRESULT open_file(const TCHAR *fn); + ZRESULT open_handle(HANDLE hf,unsigned int len); + ZRESULT open_mem(void *src,unsigned int len); + ZRESULT open_dir(); + static unsigned sread(TState &s,char *buf,unsigned size); + unsigned read(char *buf, unsigned size); + ZRESULT iclose(); + + ZRESULT ideflate(TZipFileInfo *zfi); + ZRESULT istore(); + + ZRESULT Add(const char *odstzn, void *src,unsigned int len, DWORD flags); + ZRESULT AddCentral(); + +}; + +ZRESULT TZip::Create(void *z,unsigned int len,DWORD flags) +{ + if (hfout!=0 || hmapout!=0 || obuf!=0 || writ!=0 || oerr!=ZR_OK || hasputcen) + return ZR_NOTINITED; + // + if (flags==ZIP_HANDLE) + { + HANDLE hf = (HANDLE)z; + BOOL res = DuplicateHandle(GetCurrentProcess(),hf,GetCurrentProcess(),&hfout,0,FALSE,DUPLICATE_SAME_ACCESS); + if (!res) + return ZR_NODUPH; + // now we have our own hfout, which we must close. And the caller will close hf + DWORD type = GetFileType(hfout); + ocanseek = (type==FILE_TYPE_DISK); + if (type==FILE_TYPE_DISK) + ooffset=SetFilePointer(hfout,0,NULL,FILE_CURRENT); + else + ooffset=0; + return ZR_OK; + } + else if (flags==ZIP_FILENAME) + { +#ifdef _UNICODE + const TCHAR *fn = (const TCHAR*)z; + hfout = CreateFileW(fn,GENERIC_WRITE,0,NULL,CREATE_ALWAYS,FILE_ATTRIBUTE_NORMAL,NULL); +#else + const char *fn = (const char*)z; + hfout = CreateFileA(fn,GENERIC_WRITE,0,NULL,CREATE_ALWAYS,FILE_ATTRIBUTE_NORMAL,NULL); +#endif + + if (hfout==INVALID_HANDLE_VALUE) + { + hfout=0; + return ZR_NOFILE; + } + ocanseek=true; + ooffset=0; + return ZR_OK; + } + else if (flags==ZIP_MEMORY) + { + unsigned int size = len; + if (size==0) + return ZR_MEMSIZE; + if (z!=0) + obuf=(char*)z; + else + { + hmapout = CreateFileMapping(INVALID_HANDLE_VALUE,NULL,PAGE_READWRITE,0,size,NULL); + if (hmapout==NULL) + return ZR_NOALLOC; + obuf = (char*)MapViewOfFile(hmapout,FILE_MAP_ALL_ACCESS,0,0,size); + if (obuf==0) + { + CloseHandle(hmapout); + hmapout=0; + return ZR_NOALLOC; + } + } + ocanseek=true; + opos=0; + mapsize=size; + return ZR_OK; + } + else + return ZR_ARGS; +} + + +unsigned TZip::sflush(void *param,const char *buf, unsigned *size) +{ // static + if (*size==0) return 0; + TZip *zip = (TZip*)param; + unsigned int writ = zip->write(buf,*size); + if (writ!=0) *size=0; + return writ; +} +unsigned TZip::swrite(void *param,const char *buf, unsigned size) +{ // static + if (size==0) return 0; + TZip *zip=(TZip*)param; return zip->write(buf,size); +} + +#if 0 // ----------------------------------------------------------- +unsigned int TZip::write(const char *buf,unsigned int size) +{ if (obuf!=0) + { if (opos+size>=mapsize) {oerr=ZR_MEMSIZE; return 0;} + memcpy(obuf+opos, buf, size); + opos+=size; + return size; + } + else if (hfout!=0) + { DWORD writ; WriteFile(hfout,buf,size,&writ,NULL); + return writ; + } + oerr=ZR_NOTINITED; return 0; +} +#endif // ----------------------------------------------------------- + +//+++1.2 +unsigned int TZip::write(const char *buf, unsigned int size) +{ + if (obuf != 0) + { + if (opos+size >= mapsize) + { + int newmapsize = 2*mapsize>opos+size?2*mapsize:opos+size; + HANDLE hmapout2 = CreateFileMapping(INVALID_HANDLE_VALUE,NULL,PAGE_READWRITE,0,newmapsize,NULL); + if (hmapout2 == NULL) + return ZR_NOALLOC; + char *obuf2 = NULL; // this is where we've locked mmap to view. + + obuf2 = (char*)MapViewOfFile(hmapout2,FILE_MAP_ALL_ACCESS,0,0,newmapsize); + if (obuf2 == 0) + { + CloseHandle(hmapout2); + hmapout2 = 0; + return ZR_NOALLOC; + } + + memcpy(obuf2, obuf, mapsize); + + UnmapViewOfFile(obuf); + CloseHandle(hmapout); + + mapsize = newmapsize; + obuf = obuf2; + hmapout = hmapout2; + } + memcpy(obuf+opos, buf, size); + opos += size; + return size; + } + else if (hfout!=0) + { + DWORD writ = 0; + WriteFile(hfout,buf,size,&writ,NULL); + return writ; + } + oerr = ZR_NOTINITED; + return 0; +} + + +bool TZip::oseek(unsigned int pos) +{ if (!ocanseek) {oerr=ZR_SEEK; return false;} + if (obuf!=0) + { if (pos>=mapsize) {oerr=ZR_MEMSIZE; return false;} + opos=pos; + return true; + } + else if (hfout!=0) + { SetFilePointer(hfout,pos+ooffset,NULL,FILE_BEGIN); + return true; + } + oerr=ZR_NOTINITED; return 0; +} + +ZRESULT TZip::GetMemory(void **pbuf, unsigned long *plen) +{ // When the user calls GetMemory, they're presumably at the end + // of all their adding. In any case, we have to add the central + // directory now, otherwise the memory we tell them won't be complete. + if (!hasputcen) AddCentral(); hasputcen=true; + if (pbuf!=NULL) *pbuf=(void*)obuf; + if (plen!=NULL) *plen=writ; + if (obuf==NULL) return ZR_NOTMMAP; + return ZR_OK; +} + +ZRESULT TZip::Close() +{ // if the directory hadn't already been added through a call to GetMemory, + // then we do it now + ZRESULT res=ZR_OK; if (!hasputcen) res=AddCentral(); hasputcen=true; + if (obuf!=0 && hmapout!=0) UnmapViewOfFile(obuf); obuf=0; + if (hmapout!=0) CloseHandle(hmapout); hmapout=0; + if (hfout!=0) CloseHandle(hfout); hfout=0; + return res; +} + + + + +ZRESULT TZip::open_file(const TCHAR *fn) +{ hfin=0; bufin=0; selfclosehf=false; crc=CRCVAL_INITIAL; isize=0; csize=0; ired=0; + if (fn==0) return ZR_ARGS; + HANDLE hf = CreateFile(fn,GENERIC_READ,FILE_SHARE_READ,NULL,OPEN_EXISTING,0,NULL); + if (hf==INVALID_HANDLE_VALUE) return ZR_NOFILE; + ZRESULT res = open_handle(hf,0); + if (res!=ZR_OK) {CloseHandle(hf); return res;} + selfclosehf=true; + return ZR_OK; +} +ZRESULT TZip::open_handle(HANDLE hf,unsigned int len) +{ hfin=0; bufin=0; selfclosehf=false; crc=CRCVAL_INITIAL; isize=0; csize=0; ired=0; + if (hf==0 || hf==INVALID_HANDLE_VALUE) return ZR_ARGS; + DWORD type = GetFileType(hf); + if (type==FILE_TYPE_DISK) + { ZRESULT res = GetFileInfo(hf,&attr,&isize,×,×tamp); + if (res!=ZR_OK) return res; + SetFilePointer(hf,0,NULL,FILE_BEGIN); // because GetFileInfo will have screwed it up + iseekable=true; hfin=hf; + return ZR_OK; + } + else + { attr= 0x80000000; // just a normal file + isize = -1; // can't know size until at the end + if (len!=0) isize=len; // unless we were told explicitly! + iseekable=false; + SYSTEMTIME st; GetLocalTime(&st); + FILETIME ft; SystemTimeToFileTime(&st,&ft); + WORD dosdate,dostime; FileTimeToDosDateTime(&ft,&dosdate,&dostime); + times.atime = filetime2timet(ft); + times.mtime = times.atime; + times.ctime = times.atime; + timestamp = (WORD)dostime | (((DWORD)dosdate)<<16); + hfin=hf; + return ZR_OK; + } +} +ZRESULT TZip::open_mem(void *src,unsigned int len) +{ hfin=0; bufin=(const char*)src; selfclosehf=false; crc=CRCVAL_INITIAL; ired=0; csize=0; ired=0; + lenin=len; posin=0; + if (src==0 || len==0) return ZR_ARGS; + attr= 0x80000000; // just a normal file + isize = len; + iseekable=true; + SYSTEMTIME st; GetLocalTime(&st); + FILETIME ft; SystemTimeToFileTime(&st,&ft); + WORD dosdate,dostime; FileTimeToDosDateTime(&ft,&dosdate,&dostime); + times.atime = filetime2timet(ft); + times.mtime = times.atime; + times.ctime = times.atime; + timestamp = (WORD)dostime | (((DWORD)dosdate)<<16); + return ZR_OK; +} +ZRESULT TZip::open_dir() +{ hfin=0; bufin=0; selfclosehf=false; crc=CRCVAL_INITIAL; isize=0; csize=0; ired=0; + attr= 0x41C00010; // a readable writable directory, and again directory + isize = 0; + iseekable=false; + SYSTEMTIME st; GetLocalTime(&st); + FILETIME ft; SystemTimeToFileTime(&st,&ft); + WORD dosdate,dostime; FileTimeToDosDateTime(&ft,&dosdate,&dostime); + times.atime = filetime2timet(ft); + times.mtime = times.atime; + times.ctime = times.atime; + timestamp = (WORD)dostime | (((DWORD)dosdate)<<16); + return ZR_OK; +} + +unsigned TZip::sread(TState &s,char *buf,unsigned size) +{ // static + TZip *zip = (TZip*)s.param; + return zip->read(buf,size); +} + +unsigned TZip::read(char *buf, unsigned size) +{ if (bufin!=0) + { if (posin>=lenin) return 0; // end of input + ulg red = lenin-posin; + if (red>size) red=size; + memcpy(buf, bufin+posin, red); + posin += red; + ired += red; + crc = crc32(crc, (uch*)buf, red); + return red; + } + else if (hfin!=0) + { DWORD red; + BOOL ok = ReadFile(hfin,buf,size,&red,NULL); + if (!ok) return 0; + ired += red; + crc = crc32(crc, (uch*)buf, red); + return red; + } + else {oerr=ZR_NOTINITED; return 0;} +} + +ZRESULT TZip::iclose() +{ if (selfclosehf && hfin!=0) CloseHandle(hfin); hfin=0; + bool mismatch = (isize!=-1 && isize!=ired); + isize=ired; // and crc has been being updated anyway + if (mismatch) return ZR_MISSIZE; + else return ZR_OK; +} + + + +#if 0 // ----------------------------------------------------------- +ZRESULT TZip::ideflate(TZipFileInfo *zfi) +{ TState state; + state.readfunc=sread; state.flush_outbuf=sflush; + state.param=this; state.level=8; state.seekable=iseekable; state.err=NULL; + // the following line will make ct_init realise it has to perform the init + state.ts.static_dtree[0].dl.len = 0; + // It would be nicer if I could figure out precisely which data had to + // be initted each time, and which didn't, but that's kind of difficult. + // Maybe for the next version... + // + bi_init(state,buf, sizeof(buf), TRUE); // it used to be just 1024-size, not 16384 as here + ct_init(state,&zfi->att); + lm_init(state,state.level, &zfi->flg); + ulg sz = deflate(state); + csize=sz; + if (state.err!=NULL) return ZR_FLATE; + else return ZR_OK; +} +#endif // ----------------------------------------------------------- + +//+++1.2 +// create state object on heap +ZRESULT TZip::ideflate(TZipFileInfo *zfi) +{ + ZRESULT zr = ZR_OK; + TState* state=new TState(); + (*state).readfunc=sread; (*state).flush_outbuf=sflush; + (*state).param=this; (*state).level=8; (*state).seekable=iseekable; (*state).err=NULL; + // the following line will make ct_init realise it has to perform the init + (*state).ts.static_dtree[0].dl.len = 0; + // It would be nicer if I could figure out precisely which data had to + // be initted each time, and which didn't, but that's kind of difficult. + // Maybe for the next version... + // + bi_init(*state,buf, sizeof(buf), TRUE); // it used to be just 1024-size, not 16384 as here + ct_init(*state,&zfi->att); + lm_init(*state,(*state).level, &zfi->flg); + ulg sz = deflate(*state); + csize=sz; + if ((*state).err!=NULL) + { + zr = ZR_FLATE; + } + delete state; + return zr; +} + +ZRESULT TZip::istore() +{ ulg size=0; + for (;;) + { unsigned int cin=read(buf,16384); if (cin<=0 || cin==(unsigned int)EOF) break; + unsigned int cout = write(buf,cin); if (cout!=cin) return ZR_MISSIZE; + size += cin; + } + csize=size; + return ZR_OK; +} + + + + +ZRESULT TZip::Add(const char *odstzn, void *src,unsigned int len, DWORD flags) +{ + if (oerr) + return ZR_FAILED; + if (hasputcen) + return ZR_ENDED; + + // zip has its own notion of what its names should look like: i.e. dir/file.stuff + char dstzn[MAX_PATH]; + strcpy(dstzn, odstzn); + if (*dstzn == 0) + return ZR_ARGS; + char *d=dstzn; + while (*d != 0) + { + if (*d == '\\') + *d = '/'; d++; + } + bool isdir = (flags==ZIP_FOLDER); + bool needs_trailing_slash = (isdir && dstzn[strlen(dstzn)-1]!='/'); + int method=DEFLATE; + if (isdir || HasZipSuffix(dstzn)) + method=STORE; + + // now open whatever was our input source: + ZRESULT openres; + if (flags==ZIP_FILENAME) + openres=open_file((const TCHAR*)src); + else if (flags==ZIP_HANDLE) + openres=open_handle((HANDLE)src,len); + else if (flags==ZIP_MEMORY) + openres=open_mem(src,len); + else if (flags==ZIP_FOLDER) + openres=open_dir(); + else return ZR_ARGS; + if (openres!=ZR_OK) + return openres; + + // A zip "entry" consists of a local header (which includes the file name), + // then the compressed data, and possibly an extended local header. + + // Initialize the local header + TZipFileInfo zfi; zfi.nxt=NULL; + strcpy(zfi.name,""); + strcpy(zfi.iname,dstzn); + zfi.nam=strlen(zfi.iname); + if (needs_trailing_slash) + { + strcat(zfi.iname,"/"); + zfi.nam++; + } + strcpy(zfi.zname,""); + zfi.extra=NULL; zfi.ext=0; // extra header to go after this compressed data, and its length + zfi.cextra=NULL; zfi.cext=0; // extra header to go in the central end-of-zip directory, and its length + zfi.comment=NULL; zfi.com=0; // comment, and its length + zfi.mark = 1; + zfi.dosflag = 0; + zfi.att = (ush)BINARY; + zfi.vem = (ush)0xB17; // 0xB00 is win32 os-code. 0x17 is 23 in decimal: zip 2.3 + zfi.ver = (ush)20; // Needs PKUNZIP 2.0 to unzip it + zfi.tim = timestamp; + // Even though we write the header now, it will have to be rewritten, since we don't know compressed size or crc. + zfi.crc = 0; // to be updated later + zfi.flg = 8; // 8 means 'there is an extra header'. Assume for the moment that we need it. + zfi.lflg = zfi.flg; // to be updated later + zfi.how = (ush)method; // to be updated later + zfi.siz = (ulg)(method==STORE && isize>=0 ? isize : 0); // to be updated later + zfi.len = (ulg)(isize); // to be updated later + zfi.dsk = 0; + zfi.atx = attr; + zfi.off = writ+ooffset; // offset within file of the start of this local record + // stuff the 'times' structure into zfi.extra + char xloc[EB_L_UT_SIZE]; + zfi.extra=xloc; + zfi.ext=EB_L_UT_SIZE; + char xcen[EB_C_UT_SIZE]; + zfi.cextra=xcen; + zfi.cext=EB_C_UT_SIZE; + xloc[0] = 'U'; + xloc[1] = 'T'; + xloc[2] = EB_UT_LEN(3); // length of data part of e.f. + xloc[3] = 0; + xloc[4] = EB_UT_FL_MTIME | EB_UT_FL_ATIME | EB_UT_FL_CTIME; + xloc[5] = (char)(times.mtime); + xloc[6] = (char)(times.mtime >> 8); + xloc[7] = (char)(times.mtime >> 16); + xloc[8] = (char)(times.mtime >> 24); + xloc[9] = (char)(times.atime); + xloc[10] = (char)(times.atime >> 8); + xloc[11] = (char)(times.atime >> 16); + xloc[12] = (char)(times.atime >> 24); + xloc[13] = (char)(times.ctime); + xloc[14] = (char)(times.ctime >> 8); + xloc[15] = (char)(times.ctime >> 16); + xloc[16] = (char)(times.ctime >> 24); + memcpy(zfi.cextra,zfi.extra,EB_C_UT_SIZE); + zfi.cextra[EB_LEN] = EB_UT_LEN(1); + + + // (1) Start by writing the local header: + int r = putlocal(&zfi,swrite,this); + if (r!=ZE_OK) + { + iclose(); + return ZR_WRITE; + } + writ += 4 + LOCHEAD + (unsigned int)zfi.nam + (unsigned int)zfi.ext; + if (oerr!=ZR_OK) + { + iclose(); + return oerr; + } + + //(2) Write deflated/stored file to zip file + ZRESULT writeres=ZR_OK; + if (!isdir && method==DEFLATE) + writeres=ideflate(&zfi); + else if (!isdir && method==STORE) + writeres=istore(); + else if (isdir) + csize=0; + iclose(); + writ += csize; + if (oerr!=ZR_OK) + return oerr; + if (writeres!=ZR_OK) + return ZR_WRITE; + + // (3) Either rewrite the local header with correct information... + bool first_header_has_size_right = (zfi.siz==csize); + zfi.crc = crc; + zfi.siz = csize; + zfi.len = isize; + if (ocanseek) + { + zfi.how = (ush)method; + if ((zfi.flg & 1) == 0) + zfi.flg &= ~8; // clear the extended local header flag + zfi.lflg = zfi.flg; + // rewrite the local header: + if (!oseek(zfi.off-ooffset)) + return ZR_SEEK; + if ((r = putlocal(&zfi, swrite,this)) != ZE_OK) + return ZR_WRITE; + if (!oseek(writ)) + return ZR_SEEK; + } + else + { + // (4) ... or put an updated header at the end + if (zfi.how != (ush) method) + return ZR_NOCHANGE; + if (method==STORE && !first_header_has_size_right) + return ZR_NOCHANGE; + if ((r = putextended(&zfi, swrite,this)) != ZE_OK) + return ZR_WRITE; + writ += 16L; + zfi.flg = zfi.lflg; // if flg modified by inflate, for the central index + } + if (oerr!=ZR_OK) + return oerr; + + // Keep a copy of the zipfileinfo, for our end-of-zip directory + char *cextra = new char[zfi.cext]; + memcpy(cextra,zfi.cextra,zfi.cext); zfi.cextra=cextra; + TZipFileInfo *pzfi = new TZipFileInfo; + memcpy(pzfi,&zfi,sizeof(zfi)); + if (zfis==NULL) + zfis=pzfi; + else + { + TZipFileInfo *z=zfis; + while (z->nxt!=NULL) + z=z->nxt; + z->nxt=pzfi; + } + return ZR_OK; +} + +ZRESULT TZip::AddCentral() +{ // write central directory + int numentries = 0; + ulg pos_at_start_of_central = writ; + //ulg tot_unc_size=0, tot_compressed_size=0; + bool okay=true; + for (TZipFileInfo *zfi=zfis; zfi!=NULL; ) + { if (okay) + { int res = putcentral(zfi, swrite,this); + if (res!=ZE_OK) okay=false; + } + writ += 4 + CENHEAD + (unsigned int)zfi->nam + (unsigned int)zfi->cext + (unsigned int)zfi->com; + //tot_unc_size += zfi->len; + //tot_compressed_size += zfi->siz; + numentries++; + // + TZipFileInfo *zfinext = zfi->nxt; + if (zfi->cextra!=0) delete[] zfi->cextra; + delete zfi; + zfi = zfinext; + } + ulg center_size = writ - pos_at_start_of_central; + if (okay) + { int res = putend(numentries, center_size, pos_at_start_of_central+ooffset, 0, NULL, swrite,this); + if (res!=ZE_OK) okay=false; + writ += 4 + ENDHEAD + 0; + } + if (!okay) return ZR_WRITE; + return ZR_OK; +} + + + + + +ZRESULT lasterrorZ=ZR_OK; + +unsigned int FormatZipMessageZ(ZRESULT code, char *buf,unsigned int len) +{ if (code==ZR_RECENT) code=lasterrorZ; + const char *msg="unknown zip result code"; + switch (code) + { case ZR_OK: msg="Success"; break; + case ZR_NODUPH: msg="Culdn't duplicate handle"; break; + case ZR_NOFILE: msg="Couldn't create/open file"; break; + case ZR_NOALLOC: msg="Failed to allocate memory"; break; + case ZR_WRITE: msg="Error writing to file"; break; + case ZR_NOTFOUND: msg="File not found in the zipfile"; break; + case ZR_MORE: msg="Still more data to unzip"; break; + case ZR_CORRUPT: msg="Zipfile is corrupt or not a zipfile"; break; + case ZR_READ: msg="Error reading file"; break; + case ZR_ARGS: msg="Caller: faulty arguments"; break; + case ZR_PARTIALUNZ: msg="Caller: the file had already been partially unzipped"; break; + case ZR_NOTMMAP: msg="Caller: can only get memory of a memory zipfile"; break; + case ZR_MEMSIZE: msg="Caller: not enough space allocated for memory zipfile"; break; + case ZR_FAILED: msg="Caller: there was a previous error"; break; + case ZR_ENDED: msg="Caller: additions to the zip have already been ended"; break; + case ZR_ZMODE: msg="Caller: mixing creation and opening of zip"; break; + case ZR_NOTINITED: msg="Zip-bug: internal initialisation not completed"; break; + case ZR_SEEK: msg="Zip-bug: trying to seek the unseekable"; break; + case ZR_MISSIZE: msg="Zip-bug: the anticipated size turned out wrong"; break; + case ZR_NOCHANGE: msg="Zip-bug: tried to change mind, but not allowed"; break; + case ZR_FLATE: msg="Zip-bug: an internal error during flation"; break; + } + unsigned int mlen=(unsigned int)strlen(msg); + if (buf==0 || len==0) return mlen; + unsigned int n=mlen; if (n+1>len) n=len-1; + strncpy(buf,msg,n); buf[n]=0; + return mlen; +} + + + +typedef struct +{ DWORD flag; + TZip *zip; +} TZipHandleData; + + +HZIP CreateZipZ(void *z,unsigned int len,DWORD flags) +{ + tzset(); + TZip *zip = new TZip(); + lasterrorZ = zip->Create(z,len,flags); + if (lasterrorZ != ZR_OK) + { + delete zip; + return 0; + } + TZipHandleData *han = new TZipHandleData; + han->flag = 2; + han->zip = zip; + return (HZIP)han; +} + +ZRESULT ZipAdd(HZIP hz, const TCHAR *dstzn, void *src, unsigned int len, DWORD flags) +{ + if (hz == 0) + { + lasterrorZ = ZR_ARGS; + return ZR_ARGS; + } + TZipHandleData *han = (TZipHandleData*)hz; + if (han->flag != 2) + { + lasterrorZ = ZR_ZMODE; + return ZR_ZMODE; + } + TZip *zip = han->zip; + + + if (flags == ZIP_FILENAME) + { + char szDest[MAX_PATH*2]; + memset(szDest, 0, sizeof(szDest)); + +#ifdef _UNICODE + // need to convert Unicode dest to ANSI + int nActualChars = WideCharToMultiByte(CP_ACP, // code page + 0, // performance and mapping flags + (LPCWSTR) dstzn, // wide-character string + -1, // number of chars in string + szDest, // buffer for new string + MAX_PATH*2-2, // size of buffer + NULL, // default for unmappable chars + NULL); // set when default char used + if (nActualChars == 0) + return ZR_ARGS; +#else + strcpy(szDest, dstzn); +#endif + + lasterrorZ = zip->Add(szDest, src, len, flags); + } + else + { + lasterrorZ = zip->Add((char *)dstzn, src, len, flags); + } + + return lasterrorZ; +} + +ZRESULT ZipGetMemory(HZIP hz, void **buf, unsigned long *len) +{ if (hz==0) {if (buf!=0) *buf=0; if (len!=0) *len=0; lasterrorZ=ZR_ARGS;return ZR_ARGS;} + TZipHandleData *han = (TZipHandleData*)hz; + if (han->flag!=2) {lasterrorZ=ZR_ZMODE;return ZR_ZMODE;} + TZip *zip = han->zip; + lasterrorZ = zip->GetMemory(buf,len); + return lasterrorZ; +} + +ZRESULT CloseZipZ(HZIP hz) +{ if (hz==0) {lasterrorZ=ZR_ARGS;return ZR_ARGS;} + TZipHandleData *han = (TZipHandleData*)hz; + if (han->flag!=2) {lasterrorZ=ZR_ZMODE;return ZR_ZMODE;} + TZip *zip = han->zip; + lasterrorZ = zip->Close(); + delete zip; + delete han; + return lasterrorZ; +} + +bool IsZipHandleZ(HZIP hz) +{ if (hz==0) return true; + TZipHandleData *han = (TZipHandleData*)hz; + return (han->flag==2); +} + +//+++1.2 +/** +* Added by Renaud Deysine. This fonctionnality was missing in API +* @brief Add a folder to the zip file. Empty folders will also be added. +* This method add recursively the content of a directory +* @param AbsolutePath like "C:\\Windows" or "C:\\Windows\" +* @param DirToAdd like "System32" +* +*/ +BOOL AddFolderContent(HZIP hZip, TCHAR* AbsolutePath, TCHAR* DirToAdd) +{ + HANDLE hFind; // file handle + WIN32_FIND_DATA FindFileData; + TCHAR PathToSearchInto [MAX_PATH] = {0}; + + if (NULL != DirToAdd) + { + ZipAdd(hZip, DirToAdd, 0, 0, ZIP_FOLDER); + } + + // Construct the path to search into "C:\\Windows\\System32\\*" + _tcscpy(PathToSearchInto, AbsolutePath); + _tcscat(PathToSearchInto, _T("\\")); + _tcscat(PathToSearchInto, DirToAdd); + _tcscat(PathToSearchInto, _T("\\*")); + + hFind = FindFirstFile(PathToSearchInto,&FindFileData); // find the first file + if(hFind == INVALID_HANDLE_VALUE) + { + return FALSE; + } + + bool bSearch = true; + while(bSearch) // until we finds an entry + { + if(FindNextFile(hFind,&FindFileData)) + { + // Don't care about . and .. + //if(IsDots(FindFileData.cFileName)) + if ((_tcscmp(FindFileData.cFileName, _T(".")) == 0) || + (_tcscmp(FindFileData.cFileName, _T("..")) == 0)) + continue; + + // We have found a directory + if((FindFileData.dwFileAttributes & FILE_ATTRIBUTE_DIRECTORY)) + { + TCHAR RelativePathNewDirFound[MAX_PATH] = {0}; + _tcscat(RelativePathNewDirFound, DirToAdd); + _tcscat(RelativePathNewDirFound, _T("\\")); + _tcscat(RelativePathNewDirFound, FindFileData.cFileName); + + // Recursive call with the new directory found + if (AddFolderContent(hZip, AbsolutePath, RelativePathNewDirFound)== FALSE) + { + return FALSE ; + } + + } + // We have found a file + else + { + // Add the found file to the zip file + TCHAR RelativePathNewFileFound[MAX_PATH] = {0}; + _tcscpy(RelativePathNewFileFound, DirToAdd); + _tcscat(RelativePathNewFileFound, _T("\\")); + _tcscat(RelativePathNewFileFound, FindFileData.cFileName); + + if (ZipAdd(hZip, RelativePathNewFileFound, RelativePathNewFileFound, 0, ZIP_FILENAME) != ZR_OK) + { + return FALSE; + } + } + + }//FindNextFile + else + { + if(GetLastError() == ERROR_NO_MORE_FILES) // no more files there + bSearch = false; + else { + // some error occured, close the handle and return FALSE + FindClose(hFind); + return FALSE; + } + } + }//while + + FindClose(hFind); // closing file handle + return true; + +} + -- cgit v1.2.3