VeraCrypt
aboutsummaryrefslogtreecommitdiff
path: root/src/Crypto/t1ha_bits.h
diff options
context:
space:
mode:
Diffstat (limited to 'src/Crypto/t1ha_bits.h')
-rw-r--r--src/Crypto/t1ha_bits.h904
1 files changed, 904 insertions, 0 deletions
diff --git a/src/Crypto/t1ha_bits.h b/src/Crypto/t1ha_bits.h
new file mode 100644
index 00000000..b78c4129
--- /dev/null
+++ b/src/Crypto/t1ha_bits.h
@@ -0,0 +1,904 @@
+/*
+ * Copyright (c) 2016-2018 Positive Technologies, https://www.ptsecurity.com,
+ * Fast Positive Hash.
+ *
+ * Portions Copyright (c) 2010-2018 Leonid Yuriev <leo@yuriev.ru>,
+ * The 1Hippeus project (t1h).
+ *
+ * This software is provided 'as-is', without any express or implied
+ * warranty. In no event will the authors be held liable for any damages
+ * arising from the use of this software.
+ *
+ * Permission is granted to anyone to use this software for any purpose,
+ * including commercial applications, and to alter it and redistribute it
+ * freely, subject to the following restrictions:
+ *
+ * 1. The origin of this software must not be misrepresented; you must not
+ * claim that you wrote the original software. If you use this software
+ * in a product, an acknowledgement in the product documentation would be
+ * appreciated but is not required.
+ * 2. Altered source versions must be plainly marked as such, and must not be
+ * misrepresented as being the original software.
+ * 3. This notice may not be removed or altered from any source distribution.
+ */
+
+/*
+ * t1ha = { Fast Positive Hash, aka "Позитивный Хэш" }
+ * by [Positive Technologies](https://www.ptsecurity.ru)
+ *
+ * Briefly, it is a 64-bit Hash Function:
+ * 1. Created for 64-bit little-endian platforms, in predominantly for x86_64,
+ * but portable and without penalties it can run on any 64-bit CPU.
+ * 2. In most cases up to 15% faster than City64, xxHash, mum-hash, metro-hash
+ * and all others portable hash-functions (which do not use specific
+ * hardware tricks).
+ * 3. Not suitable for cryptography.
+ *
+ * The Future will Positive. Всё будет хорошо.
+ *
+ * ACKNOWLEDGEMENT:
+ * The t1ha was originally developed by Leonid Yuriev (Леонид Юрьев)
+ * for The 1Hippeus project - zerocopy messaging in the spirit of Sparta!
+ */
+
+#pragma once
+
+#if defined(_MSC_VER)
+#pragma warning(disable : 4201) /* nameless struct/union */
+#if _MSC_VER > 1800
+#pragma warning(disable : 4464) /* relative include path contains '..' */
+#endif /* 1800 */
+#endif /* MSVC */
+#include "t1ha.h"
+
+#ifndef T1HA_USE_FAST_ONESHOT_READ
+/* Define it to 1 for little bit faster code.
+ * Unfortunately this may triggering a false-positive alarms from Valgrind,
+ * AddressSanitizer and other similar tool.
+ * So, define it to 0 for calmness if doubt. */
+#define T1HA_USE_FAST_ONESHOT_READ 1
+#endif /* T1HA_USE_FAST_ONESHOT_READ */
+
+/*****************************************************************************/
+
+#include <assert.h> /* for assert() */
+#include <string.h> /* for memcpy() */
+
+#if __BYTE_ORDER__ != __ORDER_LITTLE_ENDIAN__ && \
+ __BYTE_ORDER__ != __ORDER_BIG_ENDIAN__
+#error Unsupported byte order.
+#endif
+
+#define T1HA_UNALIGNED_ACCESS__UNABLE 0
+#define T1HA_UNALIGNED_ACCESS__SLOW 1
+#define T1HA_UNALIGNED_ACCESS__EFFICIENT 2
+
+#ifndef T1HA_SYS_UNALIGNED_ACCESS
+#if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)
+#define T1HA_SYS_UNALIGNED_ACCESS T1HA_UNALIGNED_ACCESS__EFFICIENT
+#elif defined(__ia32__)
+#define T1HA_SYS_UNALIGNED_ACCESS T1HA_UNALIGNED_ACCESS__EFFICIENT
+#elif defined(__e2k__)
+#define T1HA_SYS_UNALIGNED_ACCESS T1HA_UNALIGNED_ACCESS__SLOW
+#elif defined(__ARM_FEATURE_UNALIGNED)
+#define T1HA_SYS_UNALIGNED_ACCESS T1HA_UNALIGNED_ACCESS__EFFICIENT
+#else
+#define T1HA_SYS_UNALIGNED_ACCESS T1HA_UNALIGNED_ACCESS__UNABLE
+#endif
+#endif /* T1HA_SYS_UNALIGNED_ACCESS */
+
+#define ALIGNMENT_16 2
+#define ALIGNMENT_32 4
+#if UINTPTR_MAX > 0xffffFFFFul || ULONG_MAX > 0xffffFFFFul
+#define ALIGNMENT_64 8
+#else
+#define ALIGNMENT_64 4
+#endif
+
+#ifndef PAGESIZE
+#define PAGESIZE 4096
+#endif /* PAGESIZE */
+
+/***************************************************************************/
+
+#ifndef __has_builtin
+#define __has_builtin(x) (0)
+#endif
+
+#ifndef __has_warning
+#define __has_warning(x) (0)
+#endif
+
+#ifndef __has_feature
+#define __has_feature(x) (0)
+#endif
+
+#ifndef __has_extension
+#define __has_extension(x) (0)
+#endif
+
+#ifndef __has_attribute
+#define __has_attribute(x) (0)
+#endif
+
+#if __has_feature(address_sanitizer)
+#define __SANITIZE_ADDRESS__ 1
+#endif
+
+#ifndef __optimize
+#if defined(__clang__) && !__has_attribute(optimize)
+#define __optimize(ops)
+#elif defined(__GNUC__) || __has_attribute(optimize)
+#define __optimize(ops) __attribute__((optimize(ops)))
+#else
+#define __optimize(ops)
+#endif
+#endif /* __optimize */
+
+#ifndef __cold
+#if defined(__OPTIMIZE__)
+#if defined(__e2k__)
+#define __cold __optimize(1) __attribute__((cold))
+#elif defined(__clang__) && !__has_attribute(cold)
+/* just put infrequently used functions in separate section */
+#define __cold __attribute__((section("text.unlikely"))) __optimize("Os")
+#elif defined(__GNUC__) || __has_attribute(cold)
+#define __cold __attribute__((cold)) __optimize("Os")
+#else
+#define __cold __optimize("Os")
+#endif
+#else
+#define __cold
+#endif
+#endif /* __cold */
+
+
+#if defined(_MSC_VER)
+
+#pragma warning(push, 1)
+
+#include <stdlib.h>
+#define likely(cond) (cond)
+#define unlikely(cond) (cond)
+#define unreachable() __assume(0)
+#define bswap64(v) byteswap_64(v)
+#define bswap32(v) byteswap_32(v)
+#define bswap16(v) byteswap_16(v)
+#define rot64(v, s) rotr64(v, s)
+#define rot32(v, s) rotr32(v, s)
+#define __always_inline __forceinline
+
+#ifdef TC_WINDOWS_DRIVER
+#undef assert
+#define assert ASSERT
+#endif
+
+#if defined(_M_X64) || defined(_M_IA64)
+#pragma intrinsic(_umul128)
+#define mul_64x64_128(a, b, ph) _umul128(a, b, ph)
+#endif
+
+#if defined(_M_ARM64) || defined(_M_X64) || defined(_M_IA64)
+#pragma intrinsic(__umulh)
+#define mul_64x64_high(a, b) __umulh(a, b)
+#endif
+
+#pragma warning(pop)
+#pragma warning(disable : 4514) /* 'xyz': unreferenced inline function \
+ has been removed */
+#pragma warning(disable : 4710) /* 'xyz': function not inlined */
+#pragma warning(disable : 4711) /* function 'xyz' selected for \
+ automatic inline expansion */
+#pragma warning(disable : 4127) /* conditional expression is constant */
+#pragma warning(disable : 4702) /* unreachable code */
+
+#define __GNUC_PREREQ(a,b) 0
+#define UINT64_C(value) value ## ULL
+
+#endif /* Compiler */
+
+#ifndef likely
+#define likely(cond) (cond)
+#endif
+#ifndef unlikely
+#define unlikely(cond) (cond)
+#endif
+#ifndef __maybe_unused
+#define __maybe_unused
+#endif
+#ifndef __always_inline
+#define __always_inline __inline
+#endif
+#ifndef unreachable
+#define unreachable() \
+ do { \
+ } while (1)
+#endif
+
+
+
+#ifndef read_unaligned
+#if defined(__GNUC__) || __has_attribute(packed)
+typedef struct {
+ uint8_t unaligned_8;
+ uint16_t unaligned_16;
+ uint32_t unaligned_32;
+ uint64_t unaligned_64;
+} __attribute__((packed)) t1ha_unaligned_proxy;
+#define read_unaligned(ptr, bits) \
+ (((const t1ha_unaligned_proxy *)((const uint8_t *)(ptr)-offsetof( \
+ t1ha_unaligned_proxy, unaligned_##bits))) \
+ ->unaligned_##bits)
+#elif defined(_MSC_VER)
+#pragma warning( \
+ disable : 4235) /* nonstandard extension used: '__unaligned' \
+ * keyword not supported on this architecture */
+#define read_unaligned(ptr, bits) (*(const __unaligned uint##bits##_t *)(ptr))
+#else
+#pragma pack(push, 1)
+typedef struct {
+ uint8_t unaligned_8;
+ uint16_t unaligned_16;
+ uint32_t unaligned_32;
+ uint64_t unaligned_64;
+} t1ha_unaligned_proxy;
+#pragma pack(pop)
+#define read_unaligned(ptr, bits) \
+ (((const t1ha_unaligned_proxy *)((const uint8_t *)(ptr)-offsetof( \
+ t1ha_unaligned_proxy, unaligned_##bits))) \
+ ->unaligned_##bits)
+#endif
+#endif /* read_unaligned */
+
+#ifndef read_aligned
+#if __GNUC_PREREQ(4, 8) || __has_builtin(__builtin_assume_aligned)
+#define read_aligned(ptr, bits) \
+ (*(const uint##bits##_t *)__builtin_assume_aligned(ptr, ALIGNMENT_##bits))
+#elif (__GNUC_PREREQ(3, 3) || __has_attribute(aligned)) && !defined(__clang__)
+#define read_aligned(ptr, bits) \
+ (*(const uint##bits##_t __attribute__((aligned(ALIGNMENT_##bits))) *)(ptr))
+#elif __has_attribute(assume_aligned)
+
+static __always_inline const
+ uint16_t *__attribute__((assume_aligned(ALIGNMENT_16)))
+ cast_aligned_16(const void *ptr) {
+ return (const uint16_t *)ptr;
+}
+static __always_inline const
+ uint32_t *__attribute__((assume_aligned(ALIGNMENT_32)))
+ cast_aligned_32(const void *ptr) {
+ return (const uint32_t *)ptr;
+}
+static __always_inline const
+ uint64_t *__attribute__((assume_aligned(ALIGNMENT_64)))
+ cast_aligned_64(const void *ptr) {
+ return (const uint64_t *)ptr;
+}
+
+#define read_aligned(ptr, bits) (*cast_aligned_##bits(ptr))
+
+#elif defined(_MSC_VER)
+#define read_aligned(ptr, bits) \
+ (*(const __declspec(align(ALIGNMENT_##bits)) uint##bits##_t *)(ptr))
+#else
+#define read_aligned(ptr, bits) (*(const uint##bits##_t *)(ptr))
+#endif
+#endif /* read_aligned */
+
+#ifndef prefetch
+#if (__GNUC_PREREQ(4, 0) || __has_builtin(__builtin_prefetch)) && \
+ !defined(__ia32__)
+#define prefetch(ptr) __builtin_prefetch(ptr)
+#elif defined(_M_ARM64) || defined(_M_ARM)
+#define prefetch(ptr) __prefetch(ptr)
+#else
+#define prefetch(ptr) \
+ do { \
+ (void)(ptr); \
+ } while (0)
+#endif
+#endif /* prefetch */
+
+#if __has_warning("-Wconstant-logical-operand")
+#if defined(__clang__)
+#pragma clang diagnostic ignored "-Wconstant-logical-operand"
+#elif defined(__GNUC__)
+#pragma GCC diagnostic ignored "-Wconstant-logical-operand"
+#else
+#pragma warning disable "constant-logical-operand"
+#endif
+#endif /* -Wconstant-logical-operand */
+
+#if __has_warning("-Wtautological-pointer-compare")
+#if defined(__clang__)
+#pragma clang diagnostic ignored "-Wtautological-pointer-compare"
+#elif defined(__GNUC__)
+#pragma GCC diagnostic ignored "-Wtautological-pointer-compare"
+#else
+#pragma warning disable "tautological-pointer-compare"
+#endif
+#endif /* -Wtautological-pointer-compare */
+
+/***************************************************************************/
+
+#if __GNUC_PREREQ(4, 0)
+#pragma GCC visibility push(hidden)
+#endif /* __GNUC_PREREQ(4,0) */
+
+/*---------------------------------------------------------- Little Endian */
+
+#ifndef fetch16_le_aligned
+static __always_inline uint16_t fetch16_le_aligned(const void *v) {
+ assert(((uintptr_t)v) % ALIGNMENT_16 == 0);
+#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
+ return read_aligned(v, 16);
+#else
+ return bswap16(read_aligned(v, 16));
+#endif
+}
+#endif /* fetch16_le_aligned */
+
+#ifndef fetch16_le_unaligned
+static __always_inline uint16_t fetch16_le_unaligned(const void *v) {
+#if T1HA_SYS_UNALIGNED_ACCESS == T1HA_UNALIGNED_ACCESS__UNABLE
+ const uint8_t *p = (const uint8_t *)v;
+ return p[0] | (uint16_t)p[1] << 8;
+#elif __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
+ return read_unaligned(v, 16);
+#else
+ return bswap16(read_unaligned(v, 16));
+#endif
+}
+#endif /* fetch16_le_unaligned */
+
+#ifndef fetch32_le_aligned
+static __always_inline uint32_t fetch32_le_aligned(const void *v) {
+ assert(((uintptr_t)v) % ALIGNMENT_32 == 0);
+#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
+ return read_aligned(v, 32);
+#else
+ return bswap32(read_aligned(v, 32));
+#endif
+}
+#endif /* fetch32_le_aligned */
+
+#ifndef fetch32_le_unaligned
+static __always_inline uint32_t fetch32_le_unaligned(const void *v) {
+#if T1HA_SYS_UNALIGNED_ACCESS == T1HA_UNALIGNED_ACCESS__UNABLE
+ return fetch16_le_unaligned(v) |
+ (uint32_t)fetch16_le_unaligned((const uint8_t *)v + 2) << 16;
+#elif __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
+ return read_unaligned(v, 32);
+#else
+ return bswap32(read_unaligned(v, 32));
+#endif
+}
+#endif /* fetch32_le_unaligned */
+
+#ifndef fetch64_le_aligned
+static __always_inline uint64_t fetch64_le_aligned(const void *v) {
+ assert(((uintptr_t)v) % ALIGNMENT_64 == 0);
+#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
+ return read_aligned(v, 64);
+#else
+ return bswap64(read_aligned(v, 64));
+#endif
+}
+#endif /* fetch64_le_aligned */
+
+#ifndef fetch64_le_unaligned
+static __always_inline uint64_t fetch64_le_unaligned(const void *v) {
+#if T1HA_SYS_UNALIGNED_ACCESS == T1HA_UNALIGNED_ACCESS__UNABLE
+ return fetch32_le_unaligned(v) |
+ (uint64_t)fetch32_le_unaligned((const uint8_t *)v + 4) << 32;
+#elif __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
+ return read_unaligned(v, 64);
+#else
+ return bswap64(read_unaligned(v, 64));
+#endif
+}
+#endif /* fetch64_le_unaligned */
+
+static __always_inline uint64_t tail64_le_aligned(const void *v, size_t tail) {
+ const uint8_t *const p = (const uint8_t *)v;
+#if T1HA_USE_FAST_ONESHOT_READ && !defined(__SANITIZE_ADDRESS__)
+ /* We can perform a 'oneshot' read, which is little bit faster. */
+ const unsigned shift = ((8 - tail) & 7) << 3;
+ return fetch64_le_aligned(p) & ((~UINT64_C(0)) >> shift);
+#else
+ uint64_t r = 0;
+ switch (tail & 7) {
+ default:
+ unreachable();
+/* fall through */
+#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
+ /* For most CPUs this code is better when not needed byte reordering. */
+ case 0:
+ return fetch64_le_aligned(p);
+ case 7:
+ r = (uint64_t)p[6] << 8;
+ /* fall through */
+ case 6:
+ r += p[5];
+ r <<= 8;
+ /* fall through */
+ case 5:
+ r += p[4];
+ r <<= 32;
+ /* fall through */
+ case 4:
+ return r + fetch32_le_aligned(p);
+ case 3:
+ r = (uint64_t)p[2] << 16;
+ /* fall through */
+ case 2:
+ return r + fetch16_le_aligned(p);
+ case 1:
+ return p[0];
+#else
+ case 0:
+ r = p[7] << 8;
+ /* fall through */
+ case 7:
+ r += p[6];
+ r <<= 8;
+ /* fall through */
+ case 6:
+ r += p[5];
+ r <<= 8;
+ /* fall through */
+ case 5:
+ r += p[4];
+ r <<= 8;
+ /* fall through */
+ case 4:
+ r += p[3];
+ r <<= 8;
+ /* fall through */
+ case 3:
+ r += p[2];
+ r <<= 8;
+ /* fall through */
+ case 2:
+ r += p[1];
+ r <<= 8;
+ /* fall through */
+ case 1:
+ return r + p[0];
+#endif
+ }
+#endif /* T1HA_USE_FAST_ONESHOT_READ */
+}
+
+#if T1HA_USE_FAST_ONESHOT_READ && \
+ T1HA_SYS_UNALIGNED_ACCESS != T1HA_UNALIGNED_ACCESS__UNABLE && \
+ defined(PAGESIZE) && PAGESIZE > 42 && !defined(__SANITIZE_ADDRESS__)
+#define can_read_underside(ptr, size) \
+ (((PAGESIZE - (size)) & (uintptr_t)(ptr)) != 0)
+#endif /* T1HA_USE_FAST_ONESHOT_READ */
+
+static __always_inline uint64_t tail64_le_unaligned(const void *v,
+ size_t tail) {
+ const uint8_t *p = (const uint8_t *)v;
+#if defined(can_read_underside) && \
+ (UINTPTR_MAX > 0xffffFFFFul || ULONG_MAX > 0xffffFFFFul)
+ /* On some systems (e.g. x86_64) we can perform a 'oneshot' read, which
+ * is little bit faster. Thanks Marcin Żukowski <marcin.zukowski@gmail.com>
+ * for the reminder. */
+ const unsigned offset = (8 - tail) & 7;
+ const unsigned shift = offset << 3;
+ if (likely(can_read_underside(p, 8))) {
+ p -= offset;
+ return fetch64_le_unaligned(p) >> shift;
+ }
+ return fetch64_le_unaligned(p) & ((~UINT64_C(0)) >> shift);
+#else
+ uint64_t r = 0;
+ switch (tail & 7) {
+ default:
+ unreachable();
+/* fall through */
+#if T1HA_SYS_UNALIGNED_ACCESS == T1HA_UNALIGNED_ACCESS__EFFICIENT && \
+ __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
+ /* For most CPUs this code is better when not needed
+ * copying for alignment or byte reordering. */
+ case 0:
+ return fetch64_le_unaligned(p);
+ case 7:
+ r = (uint64_t)p[6] << 8;
+ /* fall through */
+ case 6:
+ r += p[5];
+ r <<= 8;
+ /* fall through */
+ case 5:
+ r += p[4];
+ r <<= 32;
+ /* fall through */
+ case 4:
+ return r + fetch32_le_unaligned(p);
+ case 3:
+ r = (uint64_t)p[2] << 16;
+ /* fall through */
+ case 2:
+ return r + fetch16_le_unaligned(p);
+ case 1:
+ return p[0];
+#else
+ /* For most CPUs this code is better than a
+ * copying for alignment and/or byte reordering. */
+ case 0:
+ r = p[7] << 8;
+ /* fall through */
+ case 7:
+ r += p[6];
+ r <<= 8;
+ /* fall through */
+ case 6:
+ r += p[5];
+ r <<= 8;
+ /* fall through */
+ case 5:
+ r += p[4];
+ r <<= 8;
+ /* fall through */
+ case 4:
+ r += p[3];
+ r <<= 8;
+ /* fall through */
+ case 3:
+ r += p[2];
+ r <<= 8;
+ /* fall through */
+ case 2:
+ r += p[1];
+ r <<= 8;
+ /* fall through */
+ case 1:
+ return r + p[0];
+#endif
+ }
+#endif /* can_read_underside */
+}
+
+/*------------------------------------------------------------- Big Endian */
+
+#ifndef fetch16_be_aligned
+static __maybe_unused __always_inline uint16_t
+fetch16_be_aligned(const void *v) {
+ assert(((uintptr_t)v) % ALIGNMENT_16 == 0);
+#if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
+ return read_aligned(v, 16);
+#else
+ return bswap16(read_aligned(v, 16));
+#endif
+}
+#endif /* fetch16_be_aligned */
+
+#ifndef fetch16_be_unaligned
+static __maybe_unused __always_inline uint16_t
+fetch16_be_unaligned(const void *v) {
+#if T1HA_SYS_UNALIGNED_ACCESS == T1HA_UNALIGNED_ACCESS__UNABLE
+ const uint8_t *p = (const uint8_t *)v;
+ return (uint16_t)p[0] << 8 | p[1];
+#elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
+ return read_unaligned(v, 16);
+#else
+ return bswap16(read_unaligned(v, 16));
+#endif
+}
+#endif /* fetch16_be_unaligned */
+
+#ifndef fetch32_be_aligned
+static __maybe_unused __always_inline uint32_t
+fetch32_be_aligned(const void *v) {
+ assert(((uintptr_t)v) % ALIGNMENT_32 == 0);
+#if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
+ return read_aligned(v, 32);
+#else
+ return bswap32(read_aligned(v, 32));
+#endif
+}
+#endif /* fetch32_be_aligned */
+
+#ifndef fetch32_be_unaligned
+static __maybe_unused __always_inline uint32_t
+fetch32_be_unaligned(const void *v) {
+#if T1HA_SYS_UNALIGNED_ACCESS == T1HA_UNALIGNED_ACCESS__UNABLE
+ return (uint32_t)fetch16_be_unaligned(v) << 16 |
+ fetch16_be_unaligned((const uint8_t *)v + 2);
+#elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
+ return read_unaligned(v, 32);
+#else
+ return bswap32(read_unaligned(v, 32));
+#endif
+}
+#endif /* fetch32_be_unaligned */
+
+#ifndef fetch64_be_aligned
+static __maybe_unused __always_inline uint64_t
+fetch64_be_aligned(const void *v) {
+ assert(((uintptr_t)v) % ALIGNMENT_64 == 0);
+#if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
+ return read_aligned(v, 64);
+#else
+ return bswap64(read_aligned(v, 64));
+#endif
+}
+#endif /* fetch64_be_aligned */
+
+#ifndef fetch64_be_unaligned
+static __maybe_unused __always_inline uint64_t
+fetch64_be_unaligned(const void *v) {
+#if T1HA_SYS_UNALIGNED_ACCESS == T1HA_UNALIGNED_ACCESS__UNABLE
+ return (uint64_t)fetch32_be_unaligned(v) << 32 |
+ fetch32_be_unaligned((const uint8_t *)v + 4);
+#elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
+ return read_unaligned(v, 64);
+#else
+ return bswap64(read_unaligned(v, 64));
+#endif
+}
+#endif /* fetch64_be_unaligned */
+
+static __maybe_unused __always_inline uint64_t tail64_be_aligned(const void *v,
+ size_t tail) {
+ const uint8_t *const p = (const uint8_t *)v;
+#if T1HA_USE_FAST_ONESHOT_READ && !defined(__SANITIZE_ADDRESS__)
+ /* We can perform a 'oneshot' read, which is little bit faster. */
+ const unsigned shift = ((8 - tail) & 7) << 3;
+ return fetch64_be_aligned(p) >> shift;
+#else
+ switch (tail & 7) {
+ default:
+ unreachable();
+/* fall through */
+#if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
+ /* For most CPUs this code is better when not byte reordering. */
+ case 1:
+ return p[0];
+ case 2:
+ return fetch16_be_aligned(p);
+ case 3:
+ return (uint32_t)fetch16_be_aligned(p) << 8 | p[2];
+ case 4:
+ return fetch32_be_aligned(p);
+ case 5:
+ return (uint64_t)fetch32_be_aligned(p) << 8 | p[4];
+ case 6:
+ return (uint64_t)fetch32_be_aligned(p) << 16 | fetch16_be_aligned(p + 4);
+ case 7:
+ return (uint64_t)fetch32_be_aligned(p) << 24 |
+ (uint32_t)fetch16_be_aligned(p + 4) << 8 | p[6];
+ case 0:
+ return fetch64_be_aligned(p);
+#else
+ case 1:
+ return p[0];
+ case 2:
+ return p[1] | (uint32_t)p[0] << 8;
+ case 3:
+ return p[2] | (uint32_t)p[1] << 8 | (uint32_t)p[0] << 16;
+ case 4:
+ return p[3] | (uint32_t)p[2] << 8 | (uint32_t)p[1] << 16 |
+ (uint32_t)p[0] << 24;
+ case 5:
+ return p[4] | (uint32_t)p[3] << 8 | (uint32_t)p[2] << 16 |
+ (uint32_t)p[1] << 24 | (uint64_t)p[0] << 32;
+ case 6:
+ return p[5] | (uint32_t)p[4] << 8 | (uint32_t)p[3] << 16 |
+ (uint32_t)p[2] << 24 | (uint64_t)p[1] << 32 | (uint64_t)p[0] << 40;
+ case 7:
+ return p[6] | (uint32_t)p[5] << 8 | (uint32_t)p[4] << 16 |
+ (uint32_t)p[3] << 24 | (uint64_t)p[2] << 32 | (uint64_t)p[1] << 40 |
+ (uint64_t)p[0] << 48;
+ case 0:
+ return p[7] | (uint32_t)p[6] << 8 | (uint32_t)p[5] << 16 |
+ (uint32_t)p[4] << 24 | (uint64_t)p[3] << 32 | (uint64_t)p[2] << 40 |
+ (uint64_t)p[1] << 48 | (uint64_t)p[0] << 56;
+#endif
+ }
+#endif /* T1HA_USE_FAST_ONESHOT_READ */
+}
+
+static __maybe_unused __always_inline uint64_t
+tail64_be_unaligned(const void *v, size_t tail) {
+ const uint8_t *p = (const uint8_t *)v;
+#if defined(can_read_underside) && \
+ (UINTPTR_MAX > 0xffffFFFFul || ULONG_MAX > 0xffffFFFFul)
+ /* On some systems (e.g. x86_64) we can perform a 'oneshot' read, which
+ * is little bit faster. Thanks Marcin Żukowski <marcin.zukowski@gmail.com>
+ * for the reminder. */
+ const unsigned offset = (8 - tail) & 7;
+ const unsigned shift = offset << 3;
+ if (likely(can_read_underside(p, 8))) {
+ p -= offset;
+ return fetch64_be_unaligned(p) & ((~UINT64_C(0)) >> shift);
+ }
+ return fetch64_be_unaligned(p) >> shift;
+#else
+ switch (tail & 7) {
+ default:
+ unreachable();
+/* fall through */
+#if T1HA_SYS_UNALIGNED_ACCESS == T1HA_UNALIGNED_ACCESS__EFFICIENT && \
+ __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
+ /* For most CPUs this code is better when not needed
+ * copying for alignment or byte reordering. */
+ case 1:
+ return p[0];
+ case 2:
+ return fetch16_be_unaligned(p);
+ case 3:
+ return (uint32_t)fetch16_be_unaligned(p) << 8 | p[2];
+ case 4:
+ return fetch32_be(p);
+ case 5:
+ return (uint64_t)fetch32_be_unaligned(p) << 8 | p[4];
+ case 6:
+ return (uint64_t)fetch32_be_unaligned(p) << 16 |
+ fetch16_be_unaligned(p + 4);
+ case 7:
+ return (uint64_t)fetch32_be_unaligned(p) << 24 |
+ (uint32_t)fetch16_be_unaligned(p + 4) << 8 | p[6];
+ case 0:
+ return fetch64_be_unaligned(p);
+#else
+ /* For most CPUs this code is better than a
+ * copying for alignment and/or byte reordering. */
+ case 1:
+ return p[0];
+ case 2:
+ return p[1] | (uint32_t)p[0] << 8;
+ case 3:
+ return p[2] | (uint32_t)p[1] << 8 | (uint32_t)p[0] << 16;
+ case 4:
+ return p[3] | (uint32_t)p[2] << 8 | (uint32_t)p[1] << 16 |
+ (uint32_t)p[0] << 24;
+ case 5:
+ return p[4] | (uint32_t)p[3] << 8 | (uint32_t)p[2] << 16 |
+ (uint32_t)p[1] << 24 | (uint64_t)p[0] << 32;
+ case 6:
+ return p[5] | (uint32_t)p[4] << 8 | (uint32_t)p[3] << 16 |
+ (uint32_t)p[2] << 24 | (uint64_t)p[1] << 32 | (uint64_t)p[0] << 40;
+ case 7:
+ return p[6] | (uint32_t)p[5] << 8 | (uint32_t)p[4] << 16 |
+ (uint32_t)p[3] << 24 | (uint64_t)p[2] << 32 | (uint64_t)p[1] << 40 |
+ (uint64_t)p[0] << 48;
+ case 0:
+ return p[7] | (uint32_t)p[6] << 8 | (uint32_t)p[5] << 16 |
+ (uint32_t)p[4] << 24 | (uint64_t)p[3] << 32 | (uint64_t)p[2] << 40 |
+ (uint64_t)p[1] << 48 | (uint64_t)p[0] << 56;
+#endif
+ }
+#endif /* can_read_underside */
+}
+
+/***************************************************************************/
+
+#ifndef rot64
+static __always_inline uint64_t rot64(uint64_t v, unsigned s) {
+ return (v >> s) | (v << (64 - s));
+}
+#endif /* rot64 */
+
+#ifndef mul_32x32_64
+static __always_inline uint64_t mul_32x32_64(uint32_t a, uint32_t b) {
+ return a * (uint64_t)b;
+}
+#endif /* mul_32x32_64 */
+
+#ifndef add64carry_first
+static __maybe_unused __always_inline unsigned
+add64carry_first(uint64_t base, uint64_t addend, uint64_t *sum) {
+#if __has_builtin(__builtin_addcll)
+ unsigned long long carryout;
+ *sum = __builtin_addcll(base, addend, 0, &carryout);
+ return (unsigned)carryout;
+#else
+ *sum = base + addend;
+ return *sum < addend;
+#endif /* __has_builtin(__builtin_addcll) */
+}
+#endif /* add64carry_fist */
+
+#ifndef add64carry_next
+static __maybe_unused __always_inline unsigned
+add64carry_next(unsigned carry, uint64_t base, uint64_t addend, uint64_t *sum) {
+#if __has_builtin(__builtin_addcll)
+ unsigned long long carryout;
+ *sum = __builtin_addcll(base, addend, carry, &carryout);
+ return (unsigned)carryout;
+#else
+ *sum = base + addend + carry;
+ return *sum < addend || (carry && *sum == addend);
+#endif /* __has_builtin(__builtin_addcll) */
+}
+#endif /* add64carry_next */
+
+#ifndef add64carry_last
+static __maybe_unused __always_inline void
+add64carry_last(unsigned carry, uint64_t base, uint64_t addend, uint64_t *sum) {
+#if __has_builtin(__builtin_addcll)
+ unsigned long long carryout;
+ *sum = __builtin_addcll(base, addend, carry, &carryout);
+ (void)carryout;
+#else
+ *sum = base + addend + carry;
+#endif /* __has_builtin(__builtin_addcll) */
+}
+#endif /* add64carry_last */
+
+#ifndef mul_64x64_128
+static __maybe_unused __always_inline uint64_t mul_64x64_128(uint64_t a,
+ uint64_t b,
+ uint64_t *h) {
+#if defined(__SIZEOF_INT128__) || \
+ (defined(_INTEGRAL_MAX_BITS) && _INTEGRAL_MAX_BITS >= 128)
+ __uint128_t r = (__uint128_t)a * (__uint128_t)b;
+ /* modern GCC could nicely optimize this */
+ *h = (uint64_t)(r >> 64);
+ return (uint64_t)r;
+#elif defined(mul_64x64_high)
+ *h = mul_64x64_high(a, b);
+ return a * b;
+#else
+ /* performs 64x64 to 128 bit multiplication */
+ const uint64_t ll = mul_32x32_64((uint32_t)a, (uint32_t)b);
+ const uint64_t lh = mul_32x32_64(a >> 32, (uint32_t)b);
+ const uint64_t hl = mul_32x32_64((uint32_t)a, b >> 32);
+ const uint64_t hh = mul_32x32_64(a >> 32, b >> 32);
+
+ /* Few simplification are possible here for 32-bit architectures,
+ * but thus we would lost compatibility with the original 64-bit
+ * version. Think is very bad idea, because then 32-bit t1ha will
+ * still (relatively) very slowly and well yet not compatible. */
+ uint64_t l;
+ add64carry_last(add64carry_first(ll, lh << 32, &l), hh, lh >> 32, h);
+ add64carry_last(add64carry_first(l, hl << 32, &l), *h, hl >> 32, h);
+ return l;
+#endif
+}
+#endif /* mul_64x64_128() */
+
+#ifndef mul_64x64_high
+static __maybe_unused __always_inline uint64_t mul_64x64_high(uint64_t a,
+ uint64_t b) {
+ uint64_t h;
+ mul_64x64_128(a, b, &h);
+ return h;
+}
+#endif /* mul_64x64_high */
+
+/***************************************************************************/
+
+/* 'magic' primes */
+static const uint64_t prime_0 = UINT64_C(0xEC99BF0D8372CAAB);
+static const uint64_t prime_1 = UINT64_C(0x82434FE90EDCEF39);
+static const uint64_t prime_2 = UINT64_C(0xD4F06DB99D67BE4B);
+static const uint64_t prime_3 = UINT64_C(0xBD9CACC22C6E9571);
+static const uint64_t prime_4 = UINT64_C(0x9C06FAF4D023E3AB);
+static const uint64_t prime_5 = UINT64_C(0xC060724A8424F345);
+static const uint64_t prime_6 = UINT64_C(0xCB5AF53AE3AAAC31);
+
+/* xor high and low parts of full 128-bit product */
+static __maybe_unused __always_inline uint64_t mux64(uint64_t v,
+ uint64_t prime) {
+ uint64_t l, h;
+ l = mul_64x64_128(v, prime, &h);
+ return l ^ h;
+}
+
+static __always_inline uint64_t final64(uint64_t a, uint64_t b) {
+ uint64_t x = (a + rot64(b, 41)) * prime_0;
+ uint64_t y = (rot64(a, 23) + b) * prime_6;
+ return mux64(x ^ y, prime_5);
+}
+
+static __always_inline void mixup64(uint64_t *__restrict a,
+ uint64_t *__restrict b, uint64_t v,
+ uint64_t prime) {
+ uint64_t h;
+ *a ^= mul_64x64_128(*b + v, prime, &h);
+ *b += h;
+}