VeraCrypt
aboutsummaryrefslogtreecommitdiff
path: root/src/Crypto/Aesopt.h
diff options
context:
space:
mode:
Diffstat (limited to 'src/Crypto/Aesopt.h')
-rw-r--r--src/Crypto/Aesopt.h734
1 files changed, 734 insertions, 0 deletions
diff --git a/src/Crypto/Aesopt.h b/src/Crypto/Aesopt.h
new file mode 100644
index 0000000..1b793e4
--- /dev/null
+++ b/src/Crypto/Aesopt.h
@@ -0,0 +1,734 @@
+/*
+ ---------------------------------------------------------------------------
+ Copyright (c) 1998-2007, Brian Gladman, Worcester, UK. All rights reserved.
+
+ LICENSE TERMS
+
+ The free distribution and use of this software is allowed (with or without
+ changes) provided that:
+
+ 1. source code distributions include the above copyright notice, this
+ list of conditions and the following disclaimer;
+
+ 2. binary distributions include the above copyright notice, this list
+ of conditions and the following disclaimer in their documentation;
+
+ 3. the name of the copyright holder is not used to endorse products
+ built using this software without specific written permission.
+
+ DISCLAIMER
+
+ This software is provided 'as is' with no explicit or implied warranties
+ in respect of its properties, including, but not limited to, correctness
+ and/or fitness for purpose.
+ ---------------------------------------------------------------------------
+ Issue Date: 20/12/2007
+
+ This file contains the compilation options for AES (Rijndael) and code
+ that is common across encryption, key scheduling and table generation.
+
+ OPERATION
+
+ These source code files implement the AES algorithm Rijndael designed by
+ Joan Daemen and Vincent Rijmen. This version is designed for the standard
+ block size of 16 bytes and for key sizes of 128, 192 and 256 bits (16, 24
+ and 32 bytes).
+
+ This version is designed for flexibility and speed using operations on
+ 32-bit words rather than operations on bytes. It can be compiled with
+ either big or little endian internal byte order but is faster when the
+ native byte order for the processor is used.
+
+ THE CIPHER INTERFACE
+
+ The cipher interface is implemented as an array of bytes in which lower
+ AES bit sequence indexes map to higher numeric significance within bytes.
+
+ uint_8t (an unsigned 8-bit type)
+ uint_32t (an unsigned 32-bit type)
+ struct aes_encrypt_ctx (structure for the cipher encryption context)
+ struct aes_decrypt_ctx (structure for the cipher decryption context)
+ AES_RETURN the function return type
+
+ C subroutine calls:
+
+ AES_RETURN aes_encrypt_key128(const unsigned char *key, aes_encrypt_ctx cx[1]);
+ AES_RETURN aes_encrypt_key192(const unsigned char *key, aes_encrypt_ctx cx[1]);
+ AES_RETURN aes_encrypt_key256(const unsigned char *key, aes_encrypt_ctx cx[1]);
+ AES_RETURN aes_encrypt(const unsigned char *in, unsigned char *out,
+ const aes_encrypt_ctx cx[1]);
+
+ AES_RETURN aes_decrypt_key128(const unsigned char *key, aes_decrypt_ctx cx[1]);
+ AES_RETURN aes_decrypt_key192(const unsigned char *key, aes_decrypt_ctx cx[1]);
+ AES_RETURN aes_decrypt_key256(const unsigned char *key, aes_decrypt_ctx cx[1]);
+ AES_RETURN aes_decrypt(const unsigned char *in, unsigned char *out,
+ const aes_decrypt_ctx cx[1]);
+
+ IMPORTANT NOTE: If you are using this C interface with dynamic tables make sure that
+ you call aes_init() before AES is used so that the tables are initialised.
+
+ C++ aes class subroutines:
+
+ Class AESencrypt for encryption
+
+ Construtors:
+ AESencrypt(void)
+ AESencrypt(const unsigned char *key) - 128 bit key
+ Members:
+ AES_RETURN key128(const unsigned char *key)
+ AES_RETURN key192(const unsigned char *key)
+ AES_RETURN key256(const unsigned char *key)
+ AES_RETURN encrypt(const unsigned char *in, unsigned char *out) const
+
+ Class AESdecrypt for encryption
+ Construtors:
+ AESdecrypt(void)
+ AESdecrypt(const unsigned char *key) - 128 bit key
+ Members:
+ AES_RETURN key128(const unsigned char *key)
+ AES_RETURN key192(const unsigned char *key)
+ AES_RETURN key256(const unsigned char *key)
+ AES_RETURN decrypt(const unsigned char *in, unsigned char *out) const
+*/
+
+/* Adapted for TrueCrypt */
+
+#if !defined( _AESOPT_H )
+#define _AESOPT_H
+
+#ifdef TC_WINDOWS_BOOT
+#define ASM_X86_V2
+#endif
+
+#if defined( __cplusplus )
+#include "Aescpp.h"
+#else
+#include "Aes.h"
+#endif
+
+
+#include "Common/Endian.h"
+#define IS_LITTLE_ENDIAN 1234 /* byte 0 is least significant (i386) */
+#define IS_BIG_ENDIAN 4321 /* byte 0 is most significant (mc68k) */
+
+#if BYTE_ORDER == LITTLE_ENDIAN
+# define PLATFORM_BYTE_ORDER IS_LITTLE_ENDIAN
+#endif
+
+#if BYTE_ORDER == BIG_ENDIAN
+# define PLATFORM_BYTE_ORDER IS_BIG_ENDIAN
+#endif
+
+
+/* CONFIGURATION - THE USE OF DEFINES
+
+ Later in this section there are a number of defines that control the
+ operation of the code. In each section, the purpose of each define is
+ explained so that the relevant form can be included or excluded by
+ setting either 1's or 0's respectively on the branches of the related
+ #if clauses. The following local defines should not be changed.
+*/
+
+#define ENCRYPTION_IN_C 1
+#define DECRYPTION_IN_C 2
+#define ENC_KEYING_IN_C 4
+#define DEC_KEYING_IN_C 8
+
+#define NO_TABLES 0
+#define ONE_TABLE 1
+#define FOUR_TABLES 4
+#define NONE 0
+#define PARTIAL 1
+#define FULL 2
+
+/* --- START OF USER CONFIGURED OPTIONS --- */
+
+/* 1. BYTE ORDER WITHIN 32 BIT WORDS
+
+ The fundamental data processing units in Rijndael are 8-bit bytes. The
+ input, output and key input are all enumerated arrays of bytes in which
+ bytes are numbered starting at zero and increasing to one less than the
+ number of bytes in the array in question. This enumeration is only used
+ for naming bytes and does not imply any adjacency or order relationship
+ from one byte to another. When these inputs and outputs are considered
+ as bit sequences, bits 8*n to 8*n+7 of the bit sequence are mapped to
+ byte[n] with bit 8n+i in the sequence mapped to bit 7-i within the byte.
+ In this implementation bits are numbered from 0 to 7 starting at the
+ numerically least significant end of each byte (bit n represents 2^n).
+
+ However, Rijndael can be implemented more efficiently using 32-bit
+ words by packing bytes into words so that bytes 4*n to 4*n+3 are placed
+ into word[n]. While in principle these bytes can be assembled into words
+ in any positions, this implementation only supports the two formats in
+ which bytes in adjacent positions within words also have adjacent byte
+ numbers. This order is called big-endian if the lowest numbered bytes
+ in words have the highest numeric significance and little-endian if the
+ opposite applies.
+
+ This code can work in either order irrespective of the order used by the
+ machine on which it runs. Normally the internal byte order will be set
+ to the order of the processor on which the code is to be run but this
+ define can be used to reverse this in special situations
+
+ WARNING: Assembler code versions rely on PLATFORM_BYTE_ORDER being set.
+ This define will hence be redefined later (in section 4) if necessary
+*/
+
+#if 1
+#define ALGORITHM_BYTE_ORDER PLATFORM_BYTE_ORDER
+#elif 0
+#define ALGORITHM_BYTE_ORDER IS_LITTLE_ENDIAN
+#elif 0
+#define ALGORITHM_BYTE_ORDER IS_BIG_ENDIAN
+#else
+#error The algorithm byte order is not defined
+#endif
+
+/* 2. VIA ACE SUPPORT
+
+ Define this option if support for the VIA ACE is required. This uses
+ inline assembler instructions and is only implemented for the Microsoft,
+ Intel and GCC compilers. If VIA ACE is known to be present, then defining
+ ASSUME_VIA_ACE_PRESENT will remove the ordinary encryption/decryption
+ code. If USE_VIA_ACE_IF_PRESENT is defined then VIA ACE will be used if
+ it is detected (both present and enabled) but the normal AES code will
+ also be present.
+
+ When VIA ACE is to be used, all AES encryption contexts MUST be 16 byte
+ aligned; other input/output buffers do not need to be 16 byte aligned
+ but there are very large performance gains if this can be arranged.
+ VIA ACE also requires the decryption key schedule to be in reverse
+ order (which later checks below ensure).
+*/
+
+#if 0 && !defined( USE_VIA_ACE_IF_PRESENT )
+# define USE_VIA_ACE_IF_PRESENT
+#endif
+
+#if 0 && !defined( ASSUME_VIA_ACE_PRESENT )
+# define ASSUME_VIA_ACE_PRESENT
+# endif
+
+#if defined ( _WIN64 ) || defined( _WIN32_WCE ) || \
+ defined( _MSC_VER ) && ( _MSC_VER <= 800 )
+# if defined( USE_VIA_ACE_IF_PRESENT )
+# undef USE_VIA_ACE_IF_PRESENT
+# endif
+# if defined( ASSUME_VIA_ACE_PRESENT )
+# undef ASSUME_VIA_ACE_PRESENT
+# endif
+#endif
+
+/* 3. ASSEMBLER SUPPORT
+
+ This define (which can be on the command line) enables the use of the
+ assembler code routines for encryption, decryption and key scheduling
+ as follows:
+
+ ASM_X86_V1C uses the assembler (aes_x86_v1.asm) with large tables for
+ encryption and decryption and but with key scheduling in C
+ ASM_X86_V2 uses assembler (aes_x86_v2.asm) with compressed tables for
+ encryption, decryption and key scheduling
+ ASM_X86_V2C uses assembler (aes_x86_v2.asm) with compressed tables for
+ encryption and decryption and but with key scheduling in C
+ ASM_AMD64_C uses assembler (aes_amd64.asm) with compressed tables for
+ encryption and decryption and but with key scheduling in C
+
+ Change one 'if 0' below to 'if 1' to select the version or define
+ as a compilation option.
+*/
+
+#if 0 && !defined( ASM_X86_V1C )
+# define ASM_X86_V1C
+#elif 0 && !defined( ASM_X86_V2 )
+# define ASM_X86_V2
+#elif 0 && !defined( ASM_X86_V2C )
+# define ASM_X86_V2C
+#elif 0 && !defined( ASM_AMD64_C )
+# define ASM_AMD64_C
+#endif
+
+#if (defined ( ASM_X86_V1C ) || defined( ASM_X86_V2 ) || defined( ASM_X86_V2C )) \
+ && !defined( _M_IX86 ) || defined( ASM_AMD64_C ) && !defined( _M_X64 )
+//# error Assembler code is only available for x86 and AMD64 systems
+#endif
+
+/* 4. FAST INPUT/OUTPUT OPERATIONS.
+
+ On some machines it is possible to improve speed by transferring the
+ bytes in the input and output arrays to and from the internal 32-bit
+ variables by addressing these arrays as if they are arrays of 32-bit
+ words. On some machines this will always be possible but there may
+ be a large performance penalty if the byte arrays are not aligned on
+ the normal word boundaries. On other machines this technique will
+ lead to memory access errors when such 32-bit word accesses are not
+ properly aligned. The option SAFE_IO avoids such problems but will
+ often be slower on those machines that support misaligned access
+ (especially so if care is taken to align the input and output byte
+ arrays on 32-bit word boundaries). If SAFE_IO is not defined it is
+ assumed that access to byte arrays as if they are arrays of 32-bit
+ words will not cause problems when such accesses are misaligned.
+*/
+#if 1 && !defined( _MSC_VER )
+#define SAFE_IO
+#endif
+
+/* 5. LOOP UNROLLING
+
+ The code for encryption and decrytpion cycles through a number of rounds
+ that can be implemented either in a loop or by expanding the code into a
+ long sequence of instructions, the latter producing a larger program but
+ one that will often be much faster. The latter is called loop unrolling.
+ There are also potential speed advantages in expanding two iterations in
+ a loop with half the number of iterations, which is called partial loop
+ unrolling. The following options allow partial or full loop unrolling
+ to be set independently for encryption and decryption
+*/
+#if 1
+#define ENC_UNROLL FULL
+#elif 0
+#define ENC_UNROLL PARTIAL
+#else
+#define ENC_UNROLL NONE
+#endif
+
+#if 1
+#define DEC_UNROLL FULL
+#elif 0
+#define DEC_UNROLL PARTIAL
+#else
+#define DEC_UNROLL NONE
+#endif
+
+/* 6. FAST FINITE FIELD OPERATIONS
+
+ If this section is included, tables are used to provide faster finite
+ field arithmetic (this has no effect if FIXED_TABLES is defined).
+*/
+#if !defined (TC_WINDOWS_BOOT)
+#define FF_TABLES
+#endif
+
+/* 7. INTERNAL STATE VARIABLE FORMAT
+
+ The internal state of Rijndael is stored in a number of local 32-bit
+ word varaibles which can be defined either as an array or as individual
+ names variables. Include this section if you want to store these local
+ varaibles in arrays. Otherwise individual local variables will be used.
+*/
+#if 1
+#define ARRAYS
+#endif
+
+/* 8. FIXED OR DYNAMIC TABLES
+
+ When this section is included the tables used by the code are compiled
+ statically into the binary file. Otherwise the subroutine aes_init()
+ must be called to compute them before the code is first used.
+*/
+#if !defined (TC_WINDOWS_BOOT) && !(defined( _MSC_VER ) && ( _MSC_VER <= 800 ))
+#define FIXED_TABLES
+#endif
+
+/* 9. TABLE ALIGNMENT
+
+ On some sytsems speed will be improved by aligning the AES large lookup
+ tables on particular boundaries. This define should be set to a power of
+ two giving the desired alignment. It can be left undefined if alignment
+ is not needed. This option is specific to the Microsft VC++ compiler -
+ it seems to sometimes cause trouble for the VC++ version 6 compiler.
+*/
+
+#if 1 && defined( _MSC_VER ) && ( _MSC_VER >= 1300 )
+#define TABLE_ALIGN 32
+#endif
+
+/* 10. TABLE OPTIONS
+
+ This cipher proceeds by repeating in a number of cycles known as 'rounds'
+ which are implemented by a round function which can optionally be speeded
+ up using tables. The basic tables are each 256 32-bit words, with either
+ one or four tables being required for each round function depending on
+ how much speed is required. The encryption and decryption round functions
+ are different and the last encryption and decrytpion round functions are
+ different again making four different round functions in all.
+
+ This means that:
+ 1. Normal encryption and decryption rounds can each use either 0, 1
+ or 4 tables and table spaces of 0, 1024 or 4096 bytes each.
+ 2. The last encryption and decryption rounds can also use either 0, 1
+ or 4 tables and table spaces of 0, 1024 or 4096 bytes each.
+
+ Include or exclude the appropriate definitions below to set the number
+ of tables used by this implementation.
+*/
+
+#if 1 /* set tables for the normal encryption round */
+#define ENC_ROUND FOUR_TABLES
+#elif 0
+#define ENC_ROUND ONE_TABLE
+#else
+#define ENC_ROUND NO_TABLES
+#endif
+
+#if 1 /* set tables for the last encryption round */
+#define LAST_ENC_ROUND FOUR_TABLES
+#elif 0
+#define LAST_ENC_ROUND ONE_TABLE
+#else
+#define LAST_ENC_ROUND NO_TABLES
+#endif
+
+#if 1 /* set tables for the normal decryption round */
+#define DEC_ROUND FOUR_TABLES
+#elif 0
+#define DEC_ROUND ONE_TABLE
+#else
+#define DEC_ROUND NO_TABLES
+#endif
+
+#if 1 /* set tables for the last decryption round */
+#define LAST_DEC_ROUND FOUR_TABLES
+#elif 0
+#define LAST_DEC_ROUND ONE_TABLE
+#else
+#define LAST_DEC_ROUND NO_TABLES
+#endif
+
+/* The decryption key schedule can be speeded up with tables in the same
+ way that the round functions can. Include or exclude the following
+ defines to set this requirement.
+*/
+#if 1
+#define KEY_SCHED FOUR_TABLES
+#elif 0
+#define KEY_SCHED ONE_TABLE
+#else
+#define KEY_SCHED NO_TABLES
+#endif
+
+/* ---- END OF USER CONFIGURED OPTIONS ---- */
+
+/* VIA ACE support is only available for VC++ and GCC */
+
+#if !defined( _MSC_VER ) && !defined( __GNUC__ )
+# if defined( ASSUME_VIA_ACE_PRESENT )
+# undef ASSUME_VIA_ACE_PRESENT
+# endif
+# if defined( USE_VIA_ACE_IF_PRESENT )
+# undef USE_VIA_ACE_IF_PRESENT
+# endif
+#endif
+
+#if defined( ASSUME_VIA_ACE_PRESENT ) && !defined( USE_VIA_ACE_IF_PRESENT )
+#define USE_VIA_ACE_IF_PRESENT
+#endif
+
+#if defined( USE_VIA_ACE_IF_PRESENT ) && !defined ( AES_REV_DKS )
+#define AES_REV_DKS
+#endif
+
+/* Assembler support requires the use of platform byte order */
+
+#if ( defined( ASM_X86_V1C ) || defined( ASM_X86_V2C ) || defined( ASM_AMD64_C ) ) \
+ && (ALGORITHM_BYTE_ORDER != PLATFORM_BYTE_ORDER)
+#undef ALGORITHM_BYTE_ORDER
+#define ALGORITHM_BYTE_ORDER PLATFORM_BYTE_ORDER
+#endif
+
+/* In this implementation the columns of the state array are each held in
+ 32-bit words. The state array can be held in various ways: in an array
+ of words, in a number of individual word variables or in a number of
+ processor registers. The following define maps a variable name x and
+ a column number c to the way the state array variable is to be held.
+ The first define below maps the state into an array x[c] whereas the
+ second form maps the state into a number of individual variables x0,
+ x1, etc. Another form could map individual state colums to machine
+ register names.
+*/
+
+#if defined( ARRAYS )
+#define s(x,c) x[c]
+#else
+#define s(x,c) x##c
+#endif
+
+/* This implementation provides subroutines for encryption, decryption
+ and for setting the three key lengths (separately) for encryption
+ and decryption. Since not all functions are needed, masks are set
+ up here to determine which will be implemented in C
+*/
+
+#if !defined( AES_ENCRYPT )
+# define EFUNCS_IN_C 0
+#elif defined( ASSUME_VIA_ACE_PRESENT ) || defined( ASM_X86_V1C ) \
+ || defined( ASM_X86_V2C ) || defined( ASM_AMD64_C )
+# define EFUNCS_IN_C ENC_KEYING_IN_C
+#elif !defined( ASM_X86_V2 )
+# define EFUNCS_IN_C ( ENCRYPTION_IN_C | ENC_KEYING_IN_C )
+#else
+# define EFUNCS_IN_C 0
+#endif
+
+#if !defined( AES_DECRYPT )
+# define DFUNCS_IN_C 0
+#elif defined( ASSUME_VIA_ACE_PRESENT ) || defined( ASM_X86_V1C ) \
+ || defined( ASM_X86_V2C ) || defined( ASM_AMD64_C )
+# define DFUNCS_IN_C DEC_KEYING_IN_C
+#elif !defined( ASM_X86_V2 )
+# define DFUNCS_IN_C ( DECRYPTION_IN_C | DEC_KEYING_IN_C )
+#else
+# define DFUNCS_IN_C 0
+#endif
+
+#define FUNCS_IN_C ( EFUNCS_IN_C | DFUNCS_IN_C )
+
+/* END OF CONFIGURATION OPTIONS */
+
+#define RC_LENGTH (5 * (AES_BLOCK_SIZE / 4 - 2))
+
+/* Disable or report errors on some combinations of options */
+
+#if ENC_ROUND == NO_TABLES && LAST_ENC_ROUND != NO_TABLES
+#undef LAST_ENC_ROUND
+#define LAST_ENC_ROUND NO_TABLES
+#elif ENC_ROUND == ONE_TABLE && LAST_ENC_ROUND == FOUR_TABLES
+#undef LAST_ENC_ROUND
+#define LAST_ENC_ROUND ONE_TABLE
+#endif
+
+#if ENC_ROUND == NO_TABLES && ENC_UNROLL != NONE
+#undef ENC_UNROLL
+#define ENC_UNROLL NONE
+#endif
+
+#if DEC_ROUND == NO_TABLES && LAST_DEC_ROUND != NO_TABLES
+#undef LAST_DEC_ROUND
+#define LAST_DEC_ROUND NO_TABLES
+#elif DEC_ROUND == ONE_TABLE && LAST_DEC_ROUND == FOUR_TABLES
+#undef LAST_DEC_ROUND
+#define LAST_DEC_ROUND ONE_TABLE
+#endif
+
+#if DEC_ROUND == NO_TABLES && DEC_UNROLL != NONE
+#undef DEC_UNROLL
+#define DEC_UNROLL NONE
+#endif
+
+#if defined( bswap32 )
+#define aes_sw32 bswap32
+#elif defined( bswap_32 )
+#define aes_sw32 bswap_32
+#else
+#define brot(x,n) (((uint_32t)(x) << n) | ((uint_32t)(x) >> (32 - n)))
+#define aes_sw32(x) ((brot((x),8) & 0x00ff00ff) | (brot((x),24) & 0xff00ff00))
+#endif
+
+/* upr(x,n): rotates bytes within words by n positions, moving bytes to
+ higher index positions with wrap around into low positions
+ ups(x,n): moves bytes by n positions to higher index positions in
+ words but without wrap around
+ bval(x,n): extracts a byte from a word
+
+ WARNING: The definitions given here are intended only for use with
+ unsigned variables and with shift counts that are compile
+ time constants
+*/
+
+#if ( ALGORITHM_BYTE_ORDER == IS_LITTLE_ENDIAN )
+#define upr(x,n) (((uint_32t)(x) << (8 * (n))) | ((uint_32t)(x) >> (32 - 8 * (n))))
+#define ups(x,n) ((uint_32t) (x) << (8 * (n)))
+#define bval(x,n) ((uint_8t)((x) >> (8 * (n))))
+#define bytes2word(b0, b1, b2, b3) \
+ (((uint_32t)(b3) << 24) | ((uint_32t)(b2) << 16) | ((uint_32t)(b1) << 8) | (b0))
+#endif
+
+#if ( ALGORITHM_BYTE_ORDER == IS_BIG_ENDIAN )
+#define upr(x,n) (((uint_32t)(x) >> (8 * (n))) | ((uint_32t)(x) << (32 - 8 * (n))))
+#define ups(x,n) ((uint_32t) (x) >> (8 * (n)))
+#define bval(x,n) ((uint_8t)((x) >> (24 - 8 * (n))))
+#define bytes2word(b0, b1, b2, b3) \
+ (((uint_32t)(b0) << 24) | ((uint_32t)(b1) << 16) | ((uint_32t)(b2) << 8) | (b3))
+#endif
+
+#if defined( SAFE_IO )
+
+#define word_in(x,c) bytes2word(((const uint_8t*)(x)+4*c)[0], ((const uint_8t*)(x)+4*c)[1], \
+ ((const uint_8t*)(x)+4*c)[2], ((const uint_8t*)(x)+4*c)[3])
+#define word_out(x,c,v) { ((uint_8t*)(x)+4*c)[0] = bval(v,0); ((uint_8t*)(x)+4*c)[1] = bval(v,1); \
+ ((uint_8t*)(x)+4*c)[2] = bval(v,2); ((uint_8t*)(x)+4*c)[3] = bval(v,3); }
+
+#elif ( ALGORITHM_BYTE_ORDER == PLATFORM_BYTE_ORDER )
+
+#define word_in(x,c) (*((uint_32t*)(x)+(c)))
+#define word_out(x,c,v) (*((uint_32t*)(x)+(c)) = (v))
+
+#else
+
+#define word_in(x,c) aes_sw32(*((uint_32t*)(x)+(c)))
+#define word_out(x,c,v) (*((uint_32t*)(x)+(c)) = aes_sw32(v))
+
+#endif
+
+/* the finite field modular polynomial and elements */
+
+#define WPOLY 0x011b
+#define BPOLY 0x1b
+
+/* multiply four bytes in GF(2^8) by 'x' {02} in parallel */
+
+#define m1 0x80808080
+#define m2 0x7f7f7f7f
+#define gf_mulx(x) ((((x) & m2) << 1) ^ ((((x) & m1) >> 7) * BPOLY))
+
+/* The following defines provide alternative definitions of gf_mulx that might
+ give improved performance if a fast 32-bit multiply is not available. Note
+ that a temporary variable u needs to be defined where gf_mulx is used.
+
+#define gf_mulx(x) (u = (x) & m1, u |= (u >> 1), ((x) & m2) << 1) ^ ((u >> 3) | (u >> 6))
+#define m4 (0x01010101 * BPOLY)
+#define gf_mulx(x) (u = (x) & m1, ((x) & m2) << 1) ^ ((u - (u >> 7)) & m4)
+*/
+
+/* Work out which tables are needed for the different options */
+
+#if defined( ASM_X86_V1C )
+#if defined( ENC_ROUND )
+#undef ENC_ROUND
+#endif
+#define ENC_ROUND FOUR_TABLES
+#if defined( LAST_ENC_ROUND )
+#undef LAST_ENC_ROUND
+#endif
+#define LAST_ENC_ROUND FOUR_TABLES
+#if defined( DEC_ROUND )
+#undef DEC_ROUND
+#endif
+#define DEC_ROUND FOUR_TABLES
+#if defined( LAST_DEC_ROUND )
+#undef LAST_DEC_ROUND
+#endif
+#define LAST_DEC_ROUND FOUR_TABLES
+#if defined( KEY_SCHED )
+#undef KEY_SCHED
+#define KEY_SCHED FOUR_TABLES
+#endif
+#endif
+
+#if ( FUNCS_IN_C & ENCRYPTION_IN_C ) || defined( ASM_X86_V1C )
+#if ENC_ROUND == ONE_TABLE
+#define FT1_SET
+#elif ENC_ROUND == FOUR_TABLES
+#define FT4_SET
+#else
+#define SBX_SET
+#endif
+#if LAST_ENC_ROUND == ONE_TABLE
+#define FL1_SET
+#elif LAST_ENC_ROUND == FOUR_TABLES
+#define FL4_SET
+#elif !defined( SBX_SET )
+#define SBX_SET
+#endif
+#endif
+
+#if ( FUNCS_IN_C & DECRYPTION_IN_C ) || defined( ASM_X86_V1C )
+#if DEC_ROUND == ONE_TABLE
+#define IT1_SET
+#elif DEC_ROUND == FOUR_TABLES
+#define IT4_SET
+#else
+#define ISB_SET
+#endif
+#if LAST_DEC_ROUND == ONE_TABLE
+#define IL1_SET
+#elif LAST_DEC_ROUND == FOUR_TABLES
+#define IL4_SET
+#elif !defined(ISB_SET)
+#define ISB_SET
+#endif
+#endif
+
+#if (FUNCS_IN_C & ENC_KEYING_IN_C) || (FUNCS_IN_C & DEC_KEYING_IN_C)
+#if KEY_SCHED == ONE_TABLE
+#define LS1_SET
+#elif KEY_SCHED == FOUR_TABLES
+#define LS4_SET
+#elif !defined( SBX_SET )
+#define SBX_SET
+#endif
+#endif
+
+#if (FUNCS_IN_C & DEC_KEYING_IN_C)
+#if KEY_SCHED == ONE_TABLE
+#define IM1_SET
+#elif KEY_SCHED == FOUR_TABLES
+#define IM4_SET
+#elif !defined( SBX_SET )
+#define SBX_SET
+#endif
+#endif
+
+/* generic definitions of Rijndael macros that use tables */
+
+#define no_table(x,box,vf,rf,c) bytes2word( \
+ box[bval(vf(x,0,c),rf(0,c))], \
+ box[bval(vf(x,1,c),rf(1,c))], \
+ box[bval(vf(x,2,c),rf(2,c))], \
+ box[bval(vf(x,3,c),rf(3,c))])
+
+#define one_table(x,op,tab,vf,rf,c) \
+ ( tab[bval(vf(x,0,c),rf(0,c))] \
+ ^ op(tab[bval(vf(x,1,c),rf(1,c))],1) \
+ ^ op(tab[bval(vf(x,2,c),rf(2,c))],2) \
+ ^ op(tab[bval(vf(x,3,c),rf(3,c))],3))
+
+#define four_tables(x,tab,vf,rf,c) \
+ ( tab[0][bval(vf(x,0,c),rf(0,c))] \
+ ^ tab[1][bval(vf(x,1,c),rf(1,c))] \
+ ^ tab[2][bval(vf(x,2,c),rf(2,c))] \
+ ^ tab[3][bval(vf(x,3,c),rf(3,c))])
+
+#define vf1(x,r,c) (x)
+#define rf1(r,c) (r)
+#define rf2(r,c) ((8+r-c)&3)
+
+/* perform forward and inverse column mix operation on four bytes in long word x in */
+/* parallel. NOTE: x must be a simple variable, NOT an expression in these macros. */
+
+#if defined( FM4_SET ) /* not currently used */
+#define fwd_mcol(x) four_tables(x,t_use(f,m),vf1,rf1,0)
+#elif defined( FM1_SET ) /* not currently used */
+#define fwd_mcol(x) one_table(x,upr,t_use(f,m),vf1,rf1,0)
+#else
+#define dec_fmvars uint_32t g2
+#define fwd_mcol(x) (g2 = gf_mulx(x), g2 ^ upr((x) ^ g2, 3) ^ upr((x), 2) ^ upr((x), 1))
+#endif
+
+#if defined( IM4_SET )
+#define inv_mcol(x) four_tables(x,t_use(i,m),vf1,rf1,0)
+#elif defined( IM1_SET )
+#define inv_mcol(x) one_table(x,upr,t_use(i,m),vf1,rf1,0)
+#else
+#define dec_imvars uint_32t g2, g4, g9
+#define inv_mcol(x) (g2 = gf_mulx(x), g4 = gf_mulx(g2), g9 = (x) ^ gf_mulx(g4), g4 ^= g9, \
+ (x) ^ g2 ^ g4 ^ upr(g2 ^ g9, 3) ^ upr(g4, 2) ^ upr(g9, 1))
+#endif
+
+#if defined( FL4_SET )
+#define ls_box(x,c) four_tables(x,t_use(f,l),vf1,rf2,c)
+#elif defined( LS4_SET )
+#define ls_box(x,c) four_tables(x,t_use(l,s),vf1,rf2,c)
+#elif defined( FL1_SET )
+#define ls_box(x,c) one_table(x,upr,t_use(f,l),vf1,rf2,c)
+#elif defined( LS1_SET )
+#define ls_box(x,c) one_table(x,upr,t_use(l,s),vf1,rf2,c)
+#else
+#define ls_box(x,c) no_table(x,t_use(s,box),vf1,rf2,c)
+#endif
+
+#if defined( ASM_X86_V1C ) && defined( AES_DECRYPT ) && !defined( ISB_SET )
+#define ISB_SET
+#endif
+
+#endif